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Abstract: This study focused on the identification of the filamentous fungi associated with soapstone samples exposed to outdoor 
conditions and the biocidal effect of gamma radiations on isolated fungal populations in Minas Gerais State in Brazil. Two soapstone 
blocks were placed outdoors under tropical environmental conditions for 12 months. A total of 9 filamentous fungal populations were 
identified on their surfaces, namely Acremomium (cf.) alternatum, Alternaria alternata, Aspergillus fumigatus, Calcarisporium (cf.) 
arbuscula, Cladosporium cladosporioides, Curvularia lunata, Epicoccum nigrum, Fusarium equiseti and Penicillium citrinum. The 
gamma radiation assay was then carried out as a test of biocidal action by exposing all fungal populations to the ionizing radiation. 
The results showed that only the C. cladosporioides species was resistant to this biocidal agent, since it was able to increase its 
population post exposure. Scanning electron microscopy images identified the microbial colonization on the soapstone blocks and the 
stone elementar composition was analyzed by energy dispersive X-ray spectrometry. After treatment, there was no structural and 
aesthetic alteration in the soapstone samples, and evidencing that gamma radiation can be used as a biocidal agent. However, the 
resistance of the black fungal population indicates caution in the choice of gamma irradiation as biocidal treatment. 
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1. Introduction 

During the colonial period in the State of Minas 

Gerais, Brazil, geological specimens such as 

soapstone (steatites) were used as important 

architectural elements, in church and palace coverings, 

fountains, ornamental and mainly sculptural 

architectures [1], especially in Baroque and Rococo 

art forms [2]. The soapstone was used mainly in pieces 

with finer and delicate carvings, such as medallions, 

images, sculptures and came in different shades owing 

to the variations in its mineralogical composition [3]. 

                                                           
Corresponding author: Maria Aparecida de Resende 
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The major component in soapstone is talc, with 

varying proportions of magnesite, carbonate, 

amphibole and opaque chlorite, with its gray coloring 

varying according to the distribution of the constituent 

minerals [4]. When weathered, they are brownish 

owing to oxides and iron hydroxides, and have 

macroscopic pores and cavities resulting from 

carbonate leaching [5]. 

Ionizing radiation is an alternative to commonly 

used biocidal treatment. Gamma irradiation of 

materials is used for sterilization and is often applied 

to materials for hospital use and in the food and 

pharmaceutical industries. The assay of irradiation in 
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soapstone proposed in this work is unpublished, and 

therefore, there are no descriptions in the literature. A 

high-energy radiation can cause ionization where it is 

absorbed and can remove electrons from its orbitals in 

atoms or molecules, hence termed ionizing radiation 

[6]. When an ionizing radiation is absorbed by a 

biological material, it can act directly on critical 

targets in the cell. Nucleic acid molecules that are 

ionized and excited can lead to biological changes and 

even cell death. This explains the direct effect of 

radiation, which is the dominant process when dry 

spores of microorganisms are irradiated [7]. 

The use of stone in the construction of monuments 

and sculptures has had some consequences over time, 

like the appearance of patinas [8] such as black films 

or biofilms [9]. These patinas have been identified in 

granite substrates [10-12], marble [13], all over the 

world, like Italian stone monuments [14] and 

historical monuments in Brazil [15-17]. 

In addition to factors related to the microbial action 

on the stone surface, environmental conditions, such 

as temperature, relative humidity, osmotic variation 

and nutritional conditions, influence the prevalence of 

microorganisms in the colonized area [18]. For this 

reason, alternative research on biocidal action, such as 

the use of gamma radiation instead of chemical agents, 

is extremely relevant in order to avoid the impact of 

chemical agents on the environment and on stony 

historic monuments. 

Herein, the results of the identification of 

filamentous fungi isolated from soapstone blocks 

before and after exposure to gamma irradiation were 

reported. Chemical and microscopy analyses were 

performed to investigate the interactions between 

microorganisms and the soapstone surface of 

dimensional soapstone, as seen in blocks from Minas 

Gerais, Brazil. 

2. Material and Methods 

2.1 Sample Collection and Fungal Isolation 

Two soapstone blocks of 5 × 5 cm2 were exposed to 

outdoor tropical conditions for 12 months. Sample 

collections were made twice: the first was before the 

exposure to gamma radiation, and the second after 

gamma irradiation. A sterile spatula was used to 

obtain pulverized material from the surface of the 

stone blocks. The material was then placed in sterile 

Petri dishes and subsequently closed and transported 

to the Mycology Laboratory at Federal University of 

Minas Gerais for processing (Fig. 1). 

A mixture of 1 mg of the pulverized material 

collected in 9 mL of saline solution was subjected to 

serial dilutions between 10-1 and 10-3 with 0.85% 

saline solution supplemented with 0.001% Tween 80. 

The prepared samples were plated on Czapek Dox 

Agar (Difco Laboratories, Detroit, MI, USA) by the 

spread plate method and incubated for 14 days at 

27 °C [15]. Fungal colonies were isolated and 

identified by slide culture and visualization with light 

microscopy followed by DNA sequencing. CFUs 

(Colony Forming Units) were counted, and 

subcultures were made of any morphologically 

distinct colony observed in each sample. Long-term 

preservation of fungi was carried out at -80 °C in 

cryotubes with sterile 15% glycerol. 

2.2 Fungal Identification 

DNA extraction from filamentous fungi followed 

the protocol from Godinho, V. M., et al. [19]. The ITS 

(Internal Transcribed Spacer) region was amplified 

with the  universal  primers  ITS1 and  ITS4 [20].  The 
 

 
(A)                        (B) 

Fig. 1  Soapstone blocks (A and B) of dimensions 50 × 50 
mm exposed outdoor in tropical conditions for 12 months 
before the gamma radiation assay. 
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amplification of ITS region was performed as 

described by Ferreira, M. C., et al. [21]. 

The amplicon was purified using the ExoSAP-IT 

PCR Clean-up kit (GE, Healthcare, Sunnyvale, CA, 

USA) according to the manufacturer’s instructions. 

The bands purified were sequenced in a Sequenciator 

DNA Analyzer (Applied Biosystems, Carlsbad, CA, 

USA). The obtained sequences were analyzed with 

SeqManP with Lasergene software (DNASTAR Inc., 

Madison, WI, USA), and a consensus sequence was 

obtained using Bioedit v. 7.0.5.3 software (Carlsbad, 

ON, Canada). To achieve species-rank identification 

based on ITS, the consensus sequence was aligned 

with all sequences from related species retrieved from 

the NCBI (National Centre for Biotechnology 

Information) GenBank database using BLAST 

(Nucleotide Basic Local Alignment Search Tool) [22]. 

2.3 Gamma Irradiation Assay  

The sensitivity of macromolecules to radiation is 

proportional to their molecular weight [23], and for 

the disinfection of filamentous fungi, a dose of 3 to 8 

kGy is required [7]. The soapstone samples were 

exposed to gamma radiation for 97 minutes at rate 

6,218.8 Gy/h at 10 cm. Stone samples were collected 

again after exposure. 

2.4 SEM (Scanning Electron Microscopy) and EDS 

(Energy Dispersive X-Ray Spectroscopy) 

SE (Secondary Electron) images obtained by SEM 

were used to evaluate the structural composition of the 

fungal community before gamma irradiation 

exposition. EDS is a relevant tool in the study of 

microscopic characterization of materials. The use of 

this tool in conjunction with BSE (Backscattered 

Electron) images allows better petrographic 

characterization. EDS detector installed in the SEM 

vacuum chamber measures the energy associated with 

the characteristic electrons transitions to determine 

which chemical elements are present in the sample. 

The samples were prepared with carbon coating and 

analyzed (Jeol 6360LV-Thermoloran). 

3. Results 

3.1 Chemical Characterization of Soapstone 

The EDS analysis showed a similar pattern for the 

distribution of the chemical elements that made up 

both soapstone blocks (blocks A and B) (Fig. 2). In 

relation to block A (Fig. 3), the following elements 

were detected: 6C, 8O, 12Mg, 13Al, 14Si, 20Ca, 24Cr, 

25Mn and 26Fe. The analysis of block B showed the 

same chemical components, except for the absence of 

 

  
Fig. 2  BSE images from the surface of soapstone blocks analyzed by EDS: block A (left) and block B (right). 
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Fig. 3  X-ray fluorescence spectrum showing the chemical elements in soapstone block A. 
 

Table 1  Fungal species colonizing the soapstone and the CFU/mL obtained before exposure to gamma radiation. Blocks A 
and B were outdoor exposed for 12 months under tropical conditions in Brazil. 

Species of filamentous fungi Top BLAST search results Similarity CFU/mL Block A CFU/mL Block B 

Acremomium (cf.) alternatum AB693789.1 95% 50 40 

Alternaria alternata KT280009.1 99% 114 - 

Aspergillus fumigatus DS499594.1 99% 267 50 

Calcarisporium (cf.) arbuscula KC800713.1 95% 21 - 

Cladosporium cladosporioides KF619558.1 100% 253 57 

Curvularia lunata DQ836800.1 100% - 46 

Epicoccum nigrum JN578611.1 99% - 85 

Fusarium equiseti KJ412506.1 99% - 27 

Penicillium citrinum NR121224.1 100% 102 89 

CFU/mL = Colony Forming Unit.  
 

manganese: 6C, 8O, 12Mg, 13Al, 14Si, 20Ca, 24Cr and 

26Fe. 

3.2 Effect of Gamma Radiation on the Fungal Species 

Colonizing Soapstone Blocks 

Table 1 shows the species of filamentous fungi 

colonizing primary soapstone before the gamma 

irradiation. After exposure to gamma radiation, a new 

collection was performed following the same 

parameters described, including the techniques of 

culture, isolation and fungal identification. Table 2 

shows the effect of gamma irradiation on the fungal 

species that had colonized the soapstone block. 

Exposure of the two blocks to gamma radiation 

caused a biocidal effect on 88.89% of the pioneer 

microbial communities. The only fungal species 

surviving the irradiation was C. cladosporioides. 

An inherent characteristic of this species is the 

production of dark and black dyes, which may have 

functioned as a protection factor against the gamma 

radiation, thereby allowing its survival. The CFU/mL 

after exposure to gamma radiation revealed a high 

population of C. cladosporioides; however, there was 

an observed decrease in the diameter of the colonies in 

Petri dishes (data not shown). 

3.3 Characterization of Fungal Populations by SE 

SE images showed a region of irregular surface on  
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Table 2  Fungal species colonizing the soapstone and the CFU/mL obtained after exposure to gamma radiation. Both blocks 
were outdoor exposed for 12 months under tropical conditions in Brazil. 

Species of filamentous fungi Top BLAST search results Similarity CFU/mL Block A CFU/mL Block B 

Acremomium (cf.) alternatum - - - - 

Alternaria alternata - - - - 

Aspergillus fumigatus - - - - 

Calcarisporium (cf.) arbuscula - - - - 

Cladosporium cladosporioides KF619558.1 100% 844 190 

Curvularia lunata - - - - 

Epicoccum nigrum - - - - 

Fusarium equiseti - - - - 

Penicillium citrinum - - - - 

CFU/mL = Colony Forming Unit. 
 

 
 

 

 

  

Fig. 4  SE images of soapstone blocks with fungal colonization: block A (A1, A2, A3, A4) and block B (B1, B2, B3). 
 

both blocks that was colonized by filamentous fungi 

(Fig. 4). Fungal structures such as spores, hyphae and 

mycelia were observed on the soapstone blocks before 

exposure to gamma radiation. 

4. Discussion 

The susceptibility of fungi and spores to gamma 

radiation has been established in the literature. There 

A2A1 A3 

A4 B1 B2 

B3 
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are some studies showing the effects of ionizing 

radiation on filamentous fungi [6, 24, 25]. However, 

few studies are associated with the preservation of 

cultural and geological heritage, making this work an 

innovative tool in this area. This type of ionizing 

radiation produces changes that directly affect 

microbial DNA, in addition to the interaction of 

energy with the water molecules present in the organic 

substrate, leading to the formation of free radicals 

[26]. 

Saleh, Y. G., et al. [27] studied the resistance to 

ionizing radiation of some filamentous fungi such as, 

Alternaria, Aspergillus, Cladosporium, Curvularia, 

Fusarium and Penicillium species. Alternaria 

alternata, Curvularia lunata, Curvularia geniculata 

and C. cladosporioides showed relatively more 

resistance to the effects of radioactivity. 

Studies indicate that fungal spores from soil are 

eliminated (> 99%) when irradiated at an intensity of 

10 kGy [28], which justifies the definition of this 

value for these soapstone tests. However, this value 

was not enough to eliminate the population of C. 

cladosporioides. This was the only species resistant to 

the exposure of gamma radiation. In addition, some 

strains have the metabolic capacity to produce black 

dye, such as melanin. This biopolymer is a type of 

black pigment that accumulates inside the mycelium 

and protects against UV rays and ionizing radiation 

[29]. Some authors have associated the radioresistance 

of some microorganisms with the melanization 

process of their cells [30]. 

Some species of Alternaria exhibit high resistance 

when exposed to higher doses than 4 kGy [24]. This 

fact led to the use of strains of A. alternata isolated 

from the radioisotope-contaminated environment 

around a Chernobyl nuclear reactor in Ukraine as a 

model for the genetic study of resistance to gamma 

radiation [31]. Analysis of the fungal microbiota in 

samples collected around the Chernobyl reactor 

revealed a predominance of black fungi [32]. 

 

Another study showed the effect of exposure to 

gamma radiation associated with melanin, in which 

melanized microorganisms were dominant in extreme 

environments contaminated with radiation, such as at 

Chernobyl, suggesting that the presence of melanin is 

beneficial to their life cycle. Thus, ionizing radiation 

could change the electronic properties of melanin to 

favor the growth of melanized microorganisms [29]. 

Other study published [33] showed that 

radiotrophic fungal species use melanin to convert 

gamma and beta radiation to chemical energy for 

growth. 

Thus, these data support the resistance and 

prevalence of C. cladosporioides population after 

radioactive exposure in this study. 

The ionizing radiation assay could be an alternative 

biocidal tool for the treatment of stone monuments. 

However, it is necessary to verify if the fungal species 

present is melanized or not, since radioactive exposure 

can aggravate the colonization and the permanence of 

melanized microorganisms on the stone surface. 

In the present study, the species C. cladosporioides 

showed resistance to gamma radiation, despite a 

decrease in the diameter of the colonies. In addition, 

the count of CFU/mL after the radioactive exposure 

was higher, evidencing an increase in population.  

5. Conclusions 

The deleterious action of microorganisms on the 

geological heritage and the scarce data on the 

application of an innovative technology of biocidal 

action was the motivating factor for this research.  

An alternative biocidal method of treatment with 

gamma radiation was proposed and was proven to be 

efficient in the elimination of the majority of 

filamentous fungal colonizers of stones. However, 

gamma radiation should be used with caution, since a 

deleterious effect was not observed for some species 

of black fungi; instead, it had an opposite effect of 

increasing the fungal population. 
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