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Abstract: In this work, we consider a specific problem of optimal planning of maritime transportation of multiproduct cargo by ships 
of one (so-called “corporate strategy”) or several (so-called “partially corporate strategy”) companies: the core of the problem consists 
of the existence of the network of intermediate seaports (i.e., transitional seaports), where for every ship arrived the cargo handling is 
done, and which are situated between the starting and the finishing seaports. In this work, there are mathematical models built from 
scratch in the form of multi-criterion optimization problem; according to the properties of the criteria and structure of the feasible 
solution set; are formulated different optimality conditions; are analysed different approaches for finding effective solutions (i.e., 
Pareto optimal solutions) and for check of the given solutions’ effectiveness. In addition, in this work, there is considered and analysed 
well-known method of contraction of the Pareto boundary (goal attainment method of Gembicki), then, it is used for reducing the built 
models to a one-criterion problem of linear programming.  
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1. Introduction  

Maritime cargo transportation is a complicated 

multistage transportation-and-manufacturing process, 

in what, besides sender, carrier and recipient of cargo, 

other natural and legal persons do also participate [1]: 

agents and forwarders; banks and insurance companies; 

seaport workers and workers of logistic complexes of 

intermodal and multimodal transportation systems; 

representatives of state supervisory authorities; etc. All 

these transportation-and-manufacturing process 

participants at different stages of cargo transportation 

enter into specific legal relationships among 

themselves for solving particular problems, which 

assists with the achievement of the common 

objective—punctual (fastness), inexpensive (economic 

expedience) and secure (safety and stability) delivery 
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of the cargo to the destination. For instance, Brukhis 

and Luschan [2] consider various optimization models 

solving the fleet size decision making problems 

involving fleet changes during several planning periods. 

In the article, the choice of the best suited model 

structure of deterministic nature is described. The 

author of this article shows that decisions made are 

sufficiently sensitive to small changes of the input 

parameters, and introduces so-called “scenario 

algorithm” for treating the input parameters for the 

purpose of minimizing losses coming from likely 

errors, which are a consequence of the aforesaid 

sensitivity. Further, James and Kendall [3] suggest a 

model integrating supply, production networks and 

sustainable freight transportation for strategic and 

tactical decision making. The objective function 

considers sourcing, production and transportation costs 

as well as carbon dioxide emissions as environmental 

impacts of transport over a multimodal network. The 

work [4] in detail expounds a metaheuristic algorithm 

D 
DAVID  PUBLISHING



On a Multi-criterion Problem of Planning Maritime Cargo Transportation 

  

125

based on a genetic algorithm. The purpose of the 

developed algorithm consists in solving the problem of 

car carriers work’s efficiency as well as in creating a 

maritime transportation planning support system, thus 

making it possible to prepare various alternatives, 

evaluate them and, consequently, support user’s 

decision making. On other important problems related 

to functioning of logistic system, can be found in the 

readable and deservedly popular textbooks [5, 6]. 

In the beginning of 21st century, the world 

production entered a qualitatively new phase of 

technological changes, because of which afterwards, 

the structure of international trade was changed itself, 

which led to radical reconstruction of all schemes of its 

transport maintenance, particularly, occurred 

fundamental changes in the structure of cargo base: in 

the international trade, the portion of extractive and 

primary sectors (agriculture, fishery, hunt and forestry) 

is permanently falling. For the last 20 years, the portion 

of transportation expenses in the international price of a 

good has fallen, on average, 10%, but the cost of the 

transported goods has spiked up, which led to increase 

of insurance premiums: in 2014, in comparison with 

2000, they increased 1.2 times (in comparison with 

1980—7 times), and according to predictions, the 

growth trend will be stable at least until 2025. That is 

why in these conditions qualitative factors of 

transportation service (speed; cost; safety and stability; 

service), which define the level of competitive ability 

of national transport systems, in particular, the level of 

maritime cargo transportation, are becoming 

priority-driven. Some EU countries like the Baltic 

States (Latvia, Lithuania, and Estonia), the Netherlands, 

Germany, Hungary, Czech Republic, and Poland, 

owning small territories, use their advantageous 

geographical locations to turn transit into significant 

income items for their national budgets. For instance, 

the Netherlands is the most important transit crossing 

of EU, and the portion of incomes from transit of 

freight flows going through the Port of Rotterdam 

forms more than 45% of total volume of export of 

services of the Netherlands [7]: at present, the Port of 

Rotterdam is the fourth busiest port in the world based 

on cargo turnover volumes (450 million tons), and it 

follows Shanghai (650 million tons), Ningbo/Zhoushan 

(627 million tons), and Singapore (502.5 million tons). 

In view of the fact than the investigated in this work, 

particular problem is initiated by one of the features of 

transit cargo transportation through the seaports of the 

Baltic States, we will consider the freight flows 

accomplished through these seaports in details. 

Maritime cargo is the cornerstone of transport and 

logistics in the Baltic States. Top 10 ports on the 

eastern coast of the Baltic Sea have seen a steady 

growth in total cargo turnover over the last years, 

accounting for an average increase of 5%-8% 

year-on-year. In terms of cargo transshipment, the 

ports of the eastern part of the Baltic Sea (the Eastern 

Baltic) serve mainly the east-west cargo flow corridor 

with the majority of cargo originating from the CIS 

(Commonwealth of Independent States) countries. 

While the three key Russian ports (Ust-Luga, St. 

Petersburg, and Primorsk) are the obvious leaders in 

maritime cargo transshipment for the key types of 

cargo, including oil and coal, the largest ports of the 

Baltic States still account for a significant share in the 

total cargo turnover in the region. The cost of reloading 

is not the key factor defining competitiveness of an 

individual port, as it is one of the many components in 

the overall transshipment chain. With respect to the 

east-west cargo flows, the total cost of transshipment 

heavily depends on the railway tariffs as well as the 

distance to the port, and therefore one of the primary 

determinants of the competitiveness of a port is its 

geographical location. The total volume of goods 

flowing through the seaports in the eastern part of the 

Baltic Sea reached about 370 million tonnes (Fig. 1) in 

2014 with 42% going through the seaports of the Baltic 

States.  

The dynamics of cargo turnover of seaports of  

Latvia, Lithuania, Estonia and Russia (data on Russia 

covers only Russian seaports in the Baltic Sea basin) for 
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(parameters: service equality; reliability; speed, 

tracking; damage protection; preplanning; additional 

service offering; etc.), and other key factors that are 

beyond the control of the terminal or the seaport. 

Analyzing the available data (received from open as 

well as from private sources), speaking about the 

competitive ability of the Baltic States seaports, it is 

necessary to emphasize the growing tendency of 

involvement of the highly skilled specialist in all 

spheres of these seaports activity: the salary is regularly 

raised and social benefits and entitlements are 

improved; educational courses are regularly conducted 

by high-class professors and scientists; promising 

students higher education in needed spheres is paid 

under the terms of them working for seaports during a 

determined period of time after their graduation; etc. 

That is why one aspect of organization of work in the 

Baltic States seaports is application of scientific 

approach (particularly, mathematical modeling and 

mathematical methods) for solving current problems, 

as well as for developing of scientifically substantiated 

policy for medium-term and long-term planning of 

development of the seaports. 

In this work, we investigate a specific problem, 

which is largely typical exactly for the Baltic States 

seaports. The key part of the problem consists in the 

following: it is required to create a plan of maximal 

multiproduct cargo transportation by every ship 

through the given sea route such that the transportation 

expenses are minimal if: (1) the cost of transportation 

of one unit of cargo between any two intermediate 

seaports by every ship is minimal; (2) the volumes of 

cargo unloaded and/or loaded in every intermediate 

seaport are known; (3) it is known the volume of 

intended to be transported accumulated cargo in every 

intermediate seaport; (4) it is known the shipload of 

every ship after the intended to be transported to this 

seaport cargo is unloaded from it. It is obvious that in 

the formulated problem every intermediate seaport is 

simultaneously a departure and destination point. In the 

work [12], reasons of this specific cargo transportation 

are expanded, and is made comparative analysis in 

comparison with other sea routes in transpacific, 

transatlantic and Asia → Europe directions for whose 

intermediate seaports this specific character of 

transportation is not so typical: in the work, cargo 

transportations performed by ships of three companies 

“Maersk Line”, “Mediterranean Shipping Company 

S.A.” and “CMA CGM” are considered. 

In the considered particular problem with respect to 

the ships performing transportations through the given 

sea route, we can say the following: the ships can 

belong to one company, and, therefore, in this case we 

have a corporate strategy for performing a 

transportation; all or part of the ships can belong to 

different companies, and, therefore, in this case we can 

speak about a partially corporate strategy of 

performing a transportation. Obviously, in the case of 

partially corporate strategy, it is possible to add to the 

formulation of the problem different conditions and 

constraints and, as result, obtain various problems 

according to their degree of complexity and purpose. 

2. Construction of Quantitative Model 

The problem described in the introduction, can be 

schematically presented in the form of the directed 

graph. Before we begin the model building for the 

considered problem, let us introduce the following 

denotations: n ∈  denotes the amount of seaports 

between which the cargo transportation is performed; 

[ ],start endT T  denotes a period of time during which the 

cargo transportation is performed; K ∈  denotes the 

total amount of ships used during the period of time 

[ ],start endT T  for cargo transportation along the route; 

{ }: 0 1,
def

m m
iy y i m++ ≡ ∈ > ∀ =   denotes a positive 

orthant of the space ,m  particularly, if 1m =  we 

have ( )1 0, ;
def

++ ≡ + ∞  { }: 0 1,
def

m m
iy y i m+ ≡ ∈ ≥ ∀ =   

denotes a nonnegative orthant of the space ,m  in 

particular, if m = 1, we have [ )1 0, ;
def

+ ≡ + ∞  
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( ) [ ] 1
, : ,k

i i j start endc t T T+ ++→  denotes the cost of 

transportation of an unit of the cargo loaded in -thi  

( )( )1, 1i n= −  seaport which has to be transported to 

( )-thsi j+  ( )( )1,j n i= −  seaports by the -thk  

( )1,k K=  ship. In this work, we consider only      

the case, when for [ ],start endt T T∀ ∈  holds 

( ), , ;k k
i i j i i jc t c const+ +≡ =  [ ], 0,100k

i i jp + ∈  denotes the 

percent of the cargo which is being transported by the 

-thk  ( )1,k K=  ship and which, firstly, was loaded in 

the -thi  ( )( )1, 1i n= −  seaport and, secondly, after its 

transportation in ( )-thi j+  ( )( )1,j n i= −  seaport 

“settles down”/unloads in this seaport. Obviously, for 

each fixed { }1,2,...,k K∈ , the identity ,
1

100
n i

k
i i j

j

p
−

+
=

=  

must hold for each ( )1, 1 ;i n= −  [ )1 0,
def

ia +∈ ≡ + ∞  

denotes the amount of accumulated in -thi  

( )( )1, 1i n= −  seaport cargo which can be exported: ia  

does not contain the amount of cargo which was 

brought to -thi  seaport from the seaports ( )1, 1 ;i −  
1k

ib +∈  denotes the total amount of cargo which can 

be exported from -thi  ( )( )1, 1i n= −  seaport to 

( )1 -thi +  seaport by the -thk  ( )1,k K=  ship: as 

opposed to ,ia  k
ib  contains the cargo loaded to the 

ship k  in seaports ( )1, 1 ;i −  1
, 1
k
i ix + +∈  denotes the 

amount of loaded in -thi  ( )( )1, 1i n= −  seaport cargo 

which has to be delivered by the -thk  ( )1,k K=   

ship to ( )1 -thi + seaport. Obviously, 

1 1 1 1
1,2 2,3 3,4 1,

2 2 2 2
1,2 2,3 3,4 1,

1,2 2,3 3,4 1,

...

...

... ... ... ... ...

...

n n

def
n n

K K K K
n n

x x x x

x x x x
x

x x x x

−

−

−

 
 
 

≡  
 
  
 

 is a full matrix with 

the size ( )1 ,K n× −  called the plan of the 

transportation and containing all the variables 

{ } ( )

1,1
, 1 1, 1

.
k Kk

i i i n
x

=
+ + = −

∈  

Thus, among the listed above parameters the desired 

are { } ( )

1,1
, 1 1, 1

,
k Kk

i i i n
x

=
+ + = −

∈  the amount of what, obviously, 

equals ( )1 ,K n⋅ −  but the other ( )2 1 3K n n ⋅ − + +   

parameters, included startT  and ,endT  are supposed to 

be given source data. The problem is in determination 

of a transportation plan { } ( )

1,1
, 1 1, 1

def k Kk
i i i n

x x
=

+ + = −
≡ ∈ , such 

that, firstly, the amount of transported cargo is maximal 

(first criterion), secondly, the total expenses of the 

transportation are minimal (second criterion) and, 

besides, generally speaking, these two criteria can be 

not equivalent. 

3. Construction of Mathematical Model 

Using introduced in the previous section denotations 

and assumptions, we will formulate the criteria for our 

problem. Obviously, the maximality criterion of the 

cargo transported by the -thk  ( )1,k K=  ship is the 

following function ( )
1

1 , 1
1

, 1, .
ndef

k k
i i

i

w x x k K
−

+
=

≡ ∀ =  

Therefore, the maximality criterion for all cargo 

transported by K  ships is determined by the additive 

function 1
1

,
K

k

k

w
=
  so we have 

( )
1

1 , 1
1 1

max
n Kdef

k
i i

i k

w x x
−

+
= =

 
≡ 

 
           (1) 
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For construction of the minimality criterion for the 

expenses of the transportation of the cargo transported 

by the -thk  ( )1,k K=  ship, it is necessary to calculate 

these expenses for every -thi  ( )( )1, 1i n= −  seaport: 

for the Seaport #1: 

1
2

1, 1, 1, 1,2
2 2 1

10 ;
n n n

k k k k
j m j

j m j m

c p c x
−

−

= = = +

 
− ⋅ ⋅  

 
    

etc; 

for the Seaport #(n − 2): 

( )2
2, 1 2, 2, 1 2, 2, 110 ;k k k k k

n n n n n n n n n nc c p c x−
− − − − − − − −+ − ⋅ ⋅ ⋅  

for the Seaport #(n − 1): 1, 1, .k k
n n n nc x− −⋅  

Summing up these ( )1n −  expressions, we get the 

minimality criterion for the expenses of the cargo 

transportation by the -thk  ( )1,k K=  ship: 

( )
1

2 ,
1 1

1
2

, , , 1
1 1

min

10 , 1,

n ndef
k k

i j
i j i

n n
k k k
i m i j i i

m i j m

w x c

p c x k K

−

= = +

−
−

+
= + = +

  ≡   
 − ⋅ ⋅ ∀ =   

 

 


  (2) 

Remark 1. In Eq. (2) as well as in the future, if in an 

expression of the form ( )
end

start

i

i i

t i
=
  holds ,start endi i>  

then this sum, as it is generally accepted in 

mathematics, will not be considered as an active one, 

so we will ignore it [13, 14]. The end of the remark 

(EOR). 

Therefore, the desired minimality criterion for the 

total expenses of cargo transportation performed by all 

K  ships is determined by the additive formula 2
1

,
K

k

k

w
=
  

i.e., the second criterion of the problem can be 

presented in the following form: 

( )
1

2 ,
1 1 1

1
2

, , , 1
1 1

min

10

K n ndef
k
i j

k i j i

n n
k k k
i m i j i i

m i j m

w x c

p c x

−

= = = +

−
−

+
= + = +

  ≡   
 − ⋅ ⋅   

 

 
       (3) 

Now we proceed to constructing of essential 

constraints of the problem. As the sum , 1
1

K
k
i i

k

x +
=
  is the 

amount of cargo which initially belonged to -thi  

( )( )1, 1i n= −  seaport (implying that this has never 

been transported to this seaport form another) and 

which has to be transported to ( )1 -thi +  seaport by 

the use of all K  ships, we can formulate the following 

( )1n −  inequalities: 

( ), 1
1

, 1, 1
K

k
i i i

k

x a i n+
=

≤ ∀ = −
      

 (4) 

Then, as the amount of cargo transported between 

the seaports i  and ( )1i +  ( )( )1, 1i n= −  by the 

-thk  ( )1,k K=  ship must not exceed the boat load 

k
ib  of this ship, we can write: 

for transport route “Seaport #1 → Seaport #2”: 

1,2 1 ;k kx b≤  

etc; 

for transport route “Seaport #( n-1) → Seaport #n”: 

11
2

, , 1 1, 1
1 1

1 10 .
n jn

k k k k
j j m j j n n n

j m

p x x b
− −−

−
+ + − −

= =

 
− ⋅ ⋅ + ≤ 

 
   

Therefore, we have the following ( )1K i⋅ +  

inequalities: 

( )( )

2
2

, 1 , , 1
1 1 1

10 ,

1, 1 ; 1,

i n i m
k k k k
j j j j m j j i

j m j

x p x b

i n k K

− −
−

+ + +
= = =

− ⋅ ⋅ ≤

∀ = − =

 
 (5) 

Finally, as , 1
k
i ix +  ( )( )1, 1 ; 1,i n k K∀ = − =  denotes 

the amount of cargo, we can write the following sign 
constraints: 

( )( ), 1 0 1, 1 , 1,k
i ix i n k K+ ≥ ∀ = − =     (6) 

Thus, combining the Eqs. (1) and (3)-(6), we get the 

following mathematical model of the considered 

problem: it is required to determine the values of the 

variables { } ( )

1,

, 1 1, 1

k Kk
i i i n

x
=

+ = −
 which satisfies 

( ) ( )2 1 1K n⋅ + ⋅ −  constraints  



On a Multi-criterion Problem of Planning Maritime Cargo Transportation 

  

131

( )( )

, 1
1

2

, 1 , , 1
1 1 1

, 1

100 0

0, 1, 1 , 1,

K
k
i i i

k

i n i m
k k k k
j j i j j m j j

j m j

k
i i

x a

x b p x

x i n k K

+
=

− −

+ + +
= = =

+


≤


   ⋅ − − ⋅ ≤   
  


≥ ∀ = − =




   (7) 

maximize the criterion 

( )
1

1 , 1
1 1

n Kdef
k
i i

i k

w x x
−

+
= =

≡             (8) 

and minimize the criterion 

( )
1

2 ,
1 1 1

1
2

, , , 1
1 1

10

K n ndef
k
i j

k i j i

n n
k k k
i m i j i i

m i j m

w x c

p c x

−

= = = +

−
−

+
= + = +


≡ 




− ⋅ ⋅


 

 
     (9) 

Remark 2. It should be noted that after finding the 

values of the variables { } ( )

1,

, 1 1, 1

k Kk
i i i n

x
=

+ = −
 from the Models 

(7)-(9), from a practical point of view, instead of value 

2w  from Model (9), the value 
2 ,kw  determined by the 

Eq. (2) and presenting the expenses of transportation of 

cargo by the -thk  ( )1,k K=  ship, is of interest to us. 

EOR. 

As the Models (7)-(9) is a multi-criterion problem, 

speaking about the solution of the Models (7)-(9), we 

will imply its Pareto optimal solution, which represents 

[15-20] generalization of concept of numerical 

function’s optimum point for the case, when we have 

many function, notably, the solution of a 

multi-criterion problem is a Pareto optimal solution if 

the value of every criterion can be improved only at the 

cost of worsening the values of other criteria. The 

ultimate objective of this work consists in finding a 

transportation plan { } ( )

1,

, 1 1, 1

k Kk
i i i n

x
=

+ = −
 which is a Pareto 

optimal solution of the problem. We will shortly call 

this plan an effective plan. For achievement of the 

objective of this work, first of all, it is necessary to 

examine the optimality criterion for multi-criterion 

problems of linear programming. The following of this 

work is devoted to development of the required 

optimality conditions: firstly, for an arbitrary 

multi-criterion problem and, secondly, for bi-criterion 

problems in which the feasible solution set is a 

polyhedral set (i.e., consists of a finite system of 

inequalities) and one or both criteria can be non-linear. 

Remark 3. In conclusion of this section, we 

emphasize that the formulated Criteria (8) and (9), 

generally speaking, can have different 

weights/importance/significance and, therefore, this 

circumstance should be taken into account during the 

process of solving the constructed model, if the 

decision maker misses information about the 

importance of some criteria. However, in this work, we 

will investigate the constructed Models (7)-(9), 

supposing that for the decision maker, Criteria (8) and 

(9) are equally important, i.e., the weighting 

coefficients of these criteria are equal. Therefore, 

without loss of generality, we can suppose that the 

weighting coefficients of both criteria are equal to one: 

if for some reasons it is required to interpret the 

weighting coefficients from a probabilistic point of 

view, then it will be easy to achieve them becoming 

less than one, notably, it will be sufficient to consider 

( )1

1 2

0,1
λ

λ λ
∈

+
 and ( )2

1 2

0,1
λ

λ λ
∈

+  instead of 

previous weighting coefficients 1
1λ ++∈  and 

1
2λ ++∈  as the required weight criteria (in our case, 

supposing that 1 2λ λ= , it would be correct to assume 

that both weights are 0.5. EOR. 

4. Optimality Conditions for Multi-criterion 
Linear Programming Problems 

Its well-known [16, 17] that in a multi-criterion 

problem of linear programming 

( ) ( )

{ }
[ ]

1 1

1

min max min max

max/ min , , , ,

: , , 1,

, , ,

, 1, ; , 1,

def T

m m
x X

def
n

j j

def
n n

n n
i j

F x x y x y

X x x j L

x x x x

i m j L

α α

β γ

α β

∈

  ≡ = =


 ≡ ∈Ω ⊆ ≤ ∈ =

Ω ≡ ∈ ∈

 ∈ = ∈ =



 

 

 

 (10) 



On a Multi-criterion Problem of Planning Maritime Cargo Transportation 

  

132

where, ,   denotes inner product, the set         

of attainable vector estimates 

( ) ( ){ }: ,
def

mY X y y F x x X≡ ∈ = ∈  is not only a convex 

set, but also is a polyhedral set. Therefore, for every 

efficient estimate efficienty , it is possible to find a vector 

1

: 1 ,
mdef

m
i

i

λ λ λ++ ++
=

 
∈ Λ ≡ ∈ = 

 
  such that the point 

efficienty  is the maximum/minimum point of function 

, yλ  on the set ( ).Y X  So, because of a well-known 

theorem [21], mentioned below (see Theorem 1), we 

can say that the set ( )P Y  of Pareto optimal estimate 

[16, 17] and the set ( )G Y  of Geoffrion optimal 

estimate coincide (in other words, the properly efficient 

estimates) [22-26]. 

Theorem 1. Let Y  be an efficiently convex set. The 
estimate y  is a Geoffrion optimal estimate if and only 

if there exists a vector ,λ ++∈Λ  such that holds 

, ,y yλ λ≥  for .y Y∀ ∈  The end of the theorem 

(EOT). 

Let’s formulate and prove the following theorem. 

Theorem 2. Implementation of equalities 

, ,λ α θ β=            (11) 

, , 0xθ γ β− =          (12) 

for some vectors λ ++∈Λ  and Lθ +∈  is necessary 

and sufficient for a point x  in a multi-criterion 

problem (10) of linear programming to be an efficient 

estimate (accordingly, to be a weakly efficient estimate 

(i.e., a Slater optimal estimate) if the stated equality 

holds for 
1

: 1
mdef

m
i

i

λ λ λ+ +
=

 
∈ Λ ≡ ∈ = 

 
  and Lθ +∈ ). 

EOT. 

Proof of Theorem 2. 

First of all, let’s prove the necessity of 

implementation of Eqs. (11) and (12) if the point x  is 

efficient. To this effect, let’s introduce the set 

[ ] { }{ }1,..., : , ,
def

i iI x i L xβ γ≡ ∈ =   which is called a set 

of indices of active essential constraints. It is not 

difficult to make sure that from the efficiency of the 

point x  follows inconsistence of the inequalities 

, 0, 1, ;i x i mα ≥ ∀ =  [ ], 0, .i x i I xβ ≤ ∀ ∈  Indeed, 

supposing that the point nx∈  satisfies these 

inequalities, we obtain that for 0 1ε<   and 

x x xε= + ⋅  the inequalities 

, , , 1,i ix x i mα α≥ ∀ =  

[ ], , ,i i ix x i I xβ β γ≤ = ∀ ∈   

{ } [ ], , 1,...,i ix i L I xβ γ< ∀ ∈   

are true. Obviously, validity of these inequalities 

contradicts the efficiency of the point ,x  hence the 

inconsistence of the system , 0, 1, ;i x i mα ≥ ∀ =  

[ ], 0,i x i I xβ ≤ ∀ ∈   is shown. Thus, by the 

well-known Tucker’s theorem of the alternative 

[27-30], there exist vectors , ,Lλ θ++ +∈ Λ ∈  such that 

the equality 
[ ]1

m

i i i i
i i I x

λ α θ β
= ∈

⋅ = ⋅ 


 holds. This equality, 

obviously, is equivalent to Eqs. (11) and (12). 

Now, we shall prove necessity of fulfillment of  

Eqs. (11) and (12) if the point x  is weakly efficient. 

Again, it is easy to make sure that from Slater 

optimality of the point x  follows inconsistence of the 

inequalities 

, 0, 1, ;i x i mα > ∀ =  [ ], 0,i x i I xβ ≤ ∀ ∈   

Thus, by Motzkin’s theorem of the alternatives [31], 

there exist vectors , ,Lλ θ+ +∈Λ ∈  such that the 

equality 
[ ]1

,
m

i i i i
i i I x

λ α θ β
= ∈

⋅ = ⋅ 


 which is equivalent to 

Eqs. (11) and (12), holds. The proof of necessity of 

fulfillment of Eqs. (11) and (12) is complete. The proof 

of sufficiency of fulfillment of the conditions (11), (12) 

immediately follows from the Koopmans’s lemma, 

which for the first time was obtained in     Ref. [32] 

for linear problems of the special form. The proof of 

Theorem 2 is fully complete. 

The results obtained above let us formulate the  
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following important summary: in a multi-criterion 

problem of linear programming (10), the set ( )P Y  

( )( )FP X  of efficient Pareto optimal solutions 

(estimate) and the set ( )G Y  ( )( )FG X  of Geoffrion 

optimal estimate (solutions) coincide, i.e., 

( ) ( ) ( ) ( )( ).F FP Y G Y P X G X= =  In conclusion of 

this section, let’s dwell on Pareto optimality conditions 
for bi-criterion problems of mathematical 
programming 

( ) ( ) ( )( )

( ){ }
[ ]

1 1 2 2

1

min max min max

sup ,

: , 1,

, , ,

def

x X

def
n

j j

def
n n

F x f x y f x y

X x g x j L

x x x x

γ

∈

  ≡ = = 
 

 ≡ ∈Ω ⊆ ≤ ∈ =

Ω ≡ ∈ ∈


 

 

 (13) 

using prior information about the biggest and the 

smallest values of criteria in the set of efficient 

solutions. 

Let ( ) ,FP X ≠ ∅  i.e., the set of Pareto optimal 

solution contains at least one point. Then, we can write 

that 

( )
( ) ( )sup sup , 1,2,

F

i i
x P X x X

f x f x i
∈ ∈

≤ =     (14) 

or 
( )

( ) ( )sup sup , 1,2
F

i i
x P X x X

f x f x i
∈ ∈

= =  in case of the set 

( )FP X  being also an externally stable set [33]. Let’s 

assume that ( ) ,y P Y∈  
( )1 1max .

y P Y
y y

∈
=  In this case, we 

can state that 
( )2 2min .

y P Y
y y

∈
=  Indeed, if it is not true, 

then if 
( )2 2inf ,

y P Y
y y

∈
>  there always exists a point 

( )ˆ ,y P Y∈  such that 2 2ˆ .y y>  On the other hand, 
because of point’s ŷ  efficiency, we can write 

2 1ˆ ,y y<  i.e., we obtain the inequality 1 2 2ˆ ˆy y y> >  

which contradicts the condition ( ) ,y P Y∈  

( )1 1max ,
y P Y

y y
∈

=  and, therefore, 
( )2 2min .

y P Y
y y

∈
=  We could 

note that this statement is not generalized for the 

problems of Eq. (13) in which the number of criteria is 

greater than three: for example, if in Eq. (13), there are 

three criteria and holds ( ) ,Y P Y=  then the set of 

Pareto efficient estimate will be a hexagon inscribed in 

the triangle with the vertices at the points 1 2 3, , .y y y    

Now we suppose that in the problem (13) the set X  

of feasible solutions is not, i.e., ,X ≠ ∅  and consider 

the case, when ( ) .FP X ≠ ∅  We introduce denotations 

( )
*

2 2sup
def

x X

a f x
∈

≡  if * ,X ≠ ∅  or ( )2 2inf
def

x X
a f x

∈
≡  if 

* ;X = ∅  ( )1 1sup ,
def

x X
b f x

∈
≡  ( )2 2sup ,

def

x X
b f x

∈
≡  

( ){ }*
1 1: ,

def

X z X f z b≡ ∈ =  and consider separately 

two possible cases: *X = ∅  and * .X ≠ ∅  If the first 

statement is true, then ( )2 2f x a≥  for ( );Fx P X∀ ∈  if 

the second statement is true, then by virtue of the 

inequality (14), we have ( )2 2f x b≥  and ( )2 2f x a≥  

for ( ).Fx P X∀ ∈  Thus, we can state that for 

( )Fx P X∀ ∈  holds ( ) [ ]2 2 2,f x a b∈  (here the segment 

[ ]2 2,a b  should be considered conditionally, notably, if 

one or both boundaries of the segment are not limited, 

then it should be considered as a ray or real axes). Now 

we can formulate and investigate the following 

important scalar problem: 

( ){ }
( ) [ ]

1

2 2 2

max

,
x X

f x

f x a bω
∈




≥ ∈
      (15) 

Let’s prove that if the problem (15) has unique 

solution (with an accuracy up to the equivalence) ,x  

then this solution is an efficient solution of the problem 

(13), and vice versa. Indeed, let x  be an efficient 

solution of the problem (13), i.e., ( ).Fx P X∈  Then, 

by the Podinovsky’s theorem [34], we obtain that x  is 

a solution of the problem (15) with 

( ) [ ]2 2 2, .f x a bω = ∈  Now let x  be the unique 

solution (with an accuracy up to the equivalence) of the 

problem (15). Then, from two theorems given below 

immediately follows [35] efficiency of the point x  in 

the problem (13) if in these theorems we substitute p  

for 1,  ( )( )0 f yϕ  for ( )1 ,f x ( )( )1 f yϕ  for ( )2 ,f x  

1t  for ,ω  y  for ,x  0y  for .x  
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Theorem 3. Let 0ϕ  be an increasing on the set 

( ){ }: ,
def

mY y y F x x X≡ ∈ = ∈  of attainable vector 

estimates function; functions ( )1,j j pϕ =  are 

non-decreasing on the set Y  functions. If the estimate 
0 ,y Z∈  where 

( ){ }: , 1,
def

j jZ y Y y t j pϕ≡ ∈ ≥ =     (16) 

and jt  are arbitrary fixed numbers, satisfies the 

condition 

( )0
0arg max

y Z
y yϕ

∈
=         (17) 

then it is weakly efficient. EOT. 

Theorem 4. Let ( )0, 1j j pϕ = ≥  be non-decreasing 

on the set Y  functions. If the point 0 ,y Z∈  where 

the set Z  is defined according to Eq. (16), satisfies the 

condition (17), then for its efficiency is sufficient 

fulfillment of one of the following conditions: 0ϕ  is 

increasing on the set ;Z  0y  is the only maximum 

point of the function 0ϕ  in the set .Z  EOT. 

Thus, concerning the problem (15), we can state that 

( )Fx P X∈ , if and only if the point x  is the unique 

solution (with accuracy up to the equivalence) of the 

problem (15) with [ ]2 2, .a bω ∈  Besides, now it is 

obvious that the least segment of the parameter ω  

variation with which the statement about one-to-one 

correspondence between the efficient points of the 

vector problem (13) and the solution of the scalar 

problem (15) stays true, is the segment 

( )
( )

( )
( )2 2inf , sup .

F F
x P X x P X

f x f x
∈ ∈

 
 
 

 Constructing of the least 

segment is important, because its absence would permit 

the criteria to stay underattainable or overattainable. 

However, solving many particular problems does not 

work well to determine (or at least, it appears to be a 

laborious process) the desired least segment, so instead 

of it, as a rule, a segment with “safety boundaries” is 

taken, which adds undesirable arbitrariness to the 

scientifically substantiated procedure of efficient 

decision making. 

In the next section of this work, one well-known 

method of contraction of the Pareto set (it will be 

recalled that the Pareto set (so-called the Pareto 

boundary) is the set of rate points at which it is 

impossible to improve any of the rates without 

simultaneously decreasing at least one of the others) 

will be introduced: namely, the method called “goal 

attainment method” developed by F. W. Gembicki 

[36-39] will be used for solving of the model 

constructed in Eqs. (7)-(9). 

5. Some Basic Approaches of Contraction of 
the Pareto Boundary 

Without loss of generality, in this section, we will 

investigate only a multi-criterion problem: 

( ) ( ) ( )( )

( ) ( ){ }
[ ]

1 1

1 2

min max min max

1 2 1 2

min , ,

: 0, ; 0,

, , ,

, ,

def T

m m
x X

def

i i

def
n n n

F x f x z f x z

X x g x i I g x i I

x x x x

I I I I I I L

∈

  ≡ = = 
 

 ≡ ∈Ω ≤ ∈ = ∈

Ω ≡ ⊆ ∈ ∈


= = ∅ =



  

 

 (18) 

and expounded method of contraction of the Pareto set 

will consider only for it. 
The point of the goal attainment method for the first 

time offered by F. W. Gembicki in his Ph.D. thesis [36] 

consists of the following: a set { }* *
1 , , mf f  called a 

set of intentions and connected to the objective vector 

( ) ( ) ( )( )1 , ,
T

mF x f x f x=   for the initial 

multi-criterion problem (18) is formulated. We should 

note that as ( )* 1,if i m=  can be taken the optimal 

value of the -thi  ( )1,i m=  composite one-criterion 

problem: 

( ){ }

( ) ( ){ }
[ ]

1 2

min max min max

1 2 1 2

min

: 0, ; 0,

, , ,

, ,

i
x X

def

i i

def
n n n

f x

X x g x i I g x i I

x x x x

I I I I I I L

∈




≡ ∈Ω ≤ ∈ = ∈

Ω ≡ ⊆ ∈ ∈
 = = ∅ =

  

 

 

Formulating of the set of intentions { }* *
1 , , mf f  



On a Multi-criterion Problem of Planning Maritime Cargo Transportation 

  

135

means assumption to the effect that some or even all 

objectives can be underattainable as well as 

overattainable, which lets researcher express his 

intentions relatively precisely. Moreover, the relative 

degree of underattainability or overattainability of the 

formulated intentions is controlled using ,R ω⋅  where 

the scalar parameter 1R∈  denotes unknown/desired 

relaxation of the intention; vector parameter mω ∈  

denotes vector of weighted coefficients. In the case of 

underattainment of the desired goals, the smaller 

weighting coefficient is associated with the more 

important objectives. For over-attainment of the 

desired goals, the smaller weighting coefficient is 

associated with the less important objectives. Now, the 

point of the magnitude R ω⋅  is absolutely obvious: it 

shows that rigidity of the intention { }* * *
1 , , .mF f f=   

Mathematical formulation of the goal attainment 

method, which allows us to go to the problem of vector 

optimization (18), has the following form: 

{ }

( ){
( ) ( ) }

[ ]

*

1 2

min max min max

1 2 1 2

min

: , 1,

0, ; 0,

, , ,

, ,

x S

def

i i i

i i

def
n n n

R

S x f x R f i m

g x i I g x i I

x x x x

I I I I I I L

ω

∈




≡ ∈Ω − ⋅ ≤ =


≤ ∈ = ∈

Ω ≡ ⊆ ∈ ∈

 = = ∅ =


  

 

 (20) 

Controlling the weighted coefficients 

( )1 1, ,i i mω ∈ =  researcher gets the opportunity to 

influence the extent of interconnection between the 

criteria of the problem (18). For instance, substituting 

the elements of the vector mω ∈  for the values of the 

corresponding coordinates of the initial vector of 

intentions { }* * *
1 , , mF f f=   will mean that the 

researcher desires to achieve the same extent (for 

example, in percent) of under-attainability or 

over-attainability of all objectives. Setting some 

elements of the vector mω ∈  zero value, it is 

possible to add to the problem some rigid constraints. 

The goal attainment method ensures a good intuitive 

interpretation of the considered problem, which is 

completely decidable by standard optimization 

procedures. That is why this method has well-earned 

popularity. In the works [38, 40, 41], an example of 

successful use of goal attainment method for solving 

multi-criterion problems of the control theory is clearly 

demonstrated. However, this method has the same 

disadvantages as those of the goal programming 

proposed in the work [42] (this very important method 

has been further developed in Refs. [43-47] and other 

works). Namely, the preferred solution is sensitive to 

the goal vector and the weighting vector given by the 

decision maker. When some of the desired goals are 

underattained and some overattained, the goal 

attainment method has difficulty in determining the 

proper weighting coefficient ( 1, ).i i mω =  However, 

as opposed to goal programming method, many models 

obtained by the goal attainment method, have fewer 

variables to work with, so it will be computationally 

faster. The goal attainment method for two objectives 

is illustrated in Fig. 5. 

6. Solving the Proposed Models (7)-(9) and 
(2), (7), (8) on the Assumption of Equivalence 
of Criteria 

In this section, we will investigate bi-criterion (7)-(9) 

and (K+1)-criterion problems (2), (7), (8) introduced in 

the third section. First of all, we will try to introduce 

and explain a transformation which sets bi-univocal 

correspondence between the three-index desired 

variables ( )( ), 1 1, ; 1, 1k
i ix k K i n+ = = −  and new 

one-index variables ( )( )1, 1 ,jy j K n= ⋅ −  using 

which, because of many reasons (not only with the 

objective of simplification of the variables appearance), 

is rational to reformulate and investigate Models (7)-(9) 

and (2), (7), (8). 

So, instead of the variables 

( )( ), 1 1, ; 1, 1k
i ix k K i n+ = = −   we  will  introduce  new 
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Fig. 5  Illustration of the goal attainment method for two objectives: the direction of the preferred solution vector 

( )( )F x R ω− ⋅  is fixed by the goal vector *F  and the weight vector .ω  The minimum value of R  occurs where 

( )( )F x R ω− ⋅  vector intersects the upper bound of the feasible solution set S  (for maximizing ( )F x ). 
 

variables ( )( )1, 1 ,jy j K n= ⋅ −  where index

( ){ }1, 2,..., 1j K n∈ ⋅ −  of the variable jy  and indexes

{ } { }( ), 1,2,..., 1 ; 1, 2,...,i k i n k K∈ − ∈  of the variable 

, 1
k
i ix +  are connected by the following relations: 

( ) ( )1 1j n k i= − ⋅ − +  for each fixed pair ,i k  (21) 

( )( )mod 1

1
1

i j n

j i
k

n

 ≡ −

 −= + −

 for each fixed j (22) 

The role of Transformation (21) consists in the 
following: for each fixed pair of indexes, ,i k  of the 

variable , 1
k
i ix +  Transformation (21) puts in 

correspondence unique index j  of the variable .jy  In 

other words, Transformation (21) uniquely maps 
(uniqueness is obvious as index j  runs over the rows 

of the matrix x ) the three-index variable , 1
k
i ix +  into 

one-index variable :jy  ( ) ( )
(21)

, 1 1 1 .k
i i j i k nx y y+ + − ⋅ −→ =  

Therefore, instead of the desired plan of transportation, 

which has the form of the following matrix: 
1 1 1 1
1,2 2,3 3,4 1,

2 2 2 2
1,2 2,3 3,4 1,

1,2 2,3 3,4 1,

...

...
,

... ... ... ... ...

...

n n

def
n n

K K K K
n n

x x x x

x x x x
x

x x x x

−

−

−

 
 
 

≡  
 
  
   

we obtain the same plan of transportation in the form of 

a column-vector ( )( )1, 2 1,..., .
def T

K ny y y y ⋅ −≡  

Transformation (22) is inverse transformation to 
Transformation (21). Notably, for each fixed index j  

of the variable jy , Transformation (22) puts in 

correspondence an unique pair of indexes ,i k  of the 

variable , 1.
k
i ix +  Let’s prove that Transformation (22), 

firstly, returns us positive integers , ;i k  and, secondly, 

unambiguously determines the pair of indexes , .i k  

First of all, let’s prove the naturalness of the numbers 

, .i k  Naturalness of i  immediately follows from the 

first formula of Transformation (22), which is nothing 

else than the definition of congruence ( )1n −  between 
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numbers i  and j  [48, 49]. Now let’s prove that 

.k ∈  As ,j ∈  it is obvious, that there always exist 

numbers { }1 0 ,m ∈   2 ,m ∈  such that 

( ) 1 21 .j n m m= − ⋅ +  Then, from { }1,2,..., 1i n∈ −  and 

( )( )mod 1i j n≡ −  follows that 2 ,i m= i.e. 

( ) 11 .j n m i= − ⋅ +  As from the uniquely forward 

Transformation (21) follows unique determination of 

the index ,k  we can write that 

( ) 1
1

1
1 1 1 .

1 1

n m i ij i
k m

n n

− ⋅ + −−= + = + = +
− −

 As 

1 ,m ∈  from the last expression follows 

( )11 .k m= + ∈  The proof of naturalness of the 

indices pair ,i k  determined by the transformation (22) 

is complete. 

Now we have to prove that the choice of natural 

indexes ,i k  by Eq. (22) is unique. The proof of this 

statement will be based on the definition of the 

complete residue class modulo m  concept [48, 49]: 

the set A  is called a complete residue class modulo 

,m  if for { }0,1,2,..., 1l m∀ ∈ − , there exists an element 

,a A∈  such that ( )mod .l a m≡  As for out matrix x  

(i.e., the transportation plan), the column index i  

varies from 1 to ( )1n −  included, the set { }1,2,..., 1n −  

is a complete residue class modulo ( )1 ,n −  i.e., for 

every two different elements of the set { }1,2,..., 1n − , 

the remainders of their division by ( )1n −  are different 

too: 

{ } ( )( )1 2 1 2 1 2, 1,2,..., 1 : mod 1i i n i i i i n∀ ∀ ∈ − ≠  ≡ −
 

In other words, we have proved the uniqueness of the 

index .i  In view of the fact that with fixed values of j  

and n , the desired index ,k  determined by the second 

formula of Transformation (22) is a single-valued 

function of an argument i  from the proven above fact 

about the uniqueness of the index i  follows the 

uniqueness of the index .k  The proof of the inverse 

Transformation (22) is complete. 
Thus, in future we will use new variables 

{ } ( )1, 1j j K n
y

= ⋅ −  instead of the old variables 

{ } ( )

1,

, 1 1, 1
.

k Kk
i i i n

x
=

+ = −  

6.1 Transforming the Bi-criterion Problem (7)-(9) into 

a Simple Linear Programming Problem 

Let’s reformulate modelS (7)-(9), using new 

variables { } ( )1, 1
,j j K n

y
= ⋅ −  in which the index j  is 

determined in accordance with Transformation (21): 

( )
( )1

1
1

max
K ndef

j
j

w y y
⋅ −

=

  ≡ 
  

          (23) 

( )
( )1

2
1

min
K ndef

j j
j

w y yξ
⋅ −

=

  ≡ ⋅ 
  

         (24) 

subject to: 

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )( )

1 1
1

1

1 1 1 1
1

0

1, 1 ; 1, 1 ; 1,

K

ii j n
j

i
k k
i im k n i k n

m

j

y a

m y y b

y

i n j K n k K

π

+ − ⋅ −
=

−

+ − ⋅ − + − ⋅ −
=


≤



 ⋅ + ≤


≥

∀ = − = ⋅ − =



  (25) 

where, for each value of i  ( )( )2, 1i n= −  and k  

( )1,k K= , the coefficients ( ),k
i mπ  which appear in 

the second line of the constraints system (25) are 

calculated using the following formula: 

( ) 2
,

1

1 10
idef

k k
i m j

j m

m pπ −

= +
≡ − ⋅           (26) 

the coefficients { } ( )1, 1j j K n
ξ

= ⋅ −  in Criterion (24) are 

elements of a row-vector ξ  with the size 

( )1 1 ,K n× ⋅ −  which is created applying 

Transformation (21) to the matrix ( )( )1 1K nη +∈ × −  

whose elements { } ( )1, 1

, 1,

i n

k i k K
η

= −

=
 are calculated using the 

following formula: 

( )( )

1
2

, , ,
1 1

,
1

10

, 1, , 1, 1

n ndef
k k

k i i m i j
m i j m

n
k
i j

j i

p c

c k K i n

η
−

−

= + = +

= +

≡ − ⋅

+ ∀ = = −

 


     (27) 

Thus, instead of initial bi-criterion Models (7)-(9), 

we have obtained an equivalent bi-criterion problem 

(23)-(27), for which finding of the Pareto optimal 
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solution will be achieved by using Gembicki goal 

attainment method, which was described in Section 5.3 

of this work. 

We introduce the denotation 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )( )

1
25 1 1

1

1

1 1 1 1
1

:

1, 1 ; 1,

Kdef

ii j n
j

i
k k
i im k n i k n

m

Y y y a

m y y b

i n k K

π

+ + − ⋅ −
=

−

+ − ⋅ − + − ⋅ −
=

≡ ∈ ≤



⋅ + ≤ 


∀ = − = 







 (28) 

and we suppose that 
( )

( )

25

1
*
1

1

arg max ;
K ndef

j
y Y j

w y
⋅ −

∈ =
≡   

( )

( )

25

1
*
2

1

arg min ,
K ndef

j j
y Y j

w yξ
⋅ −

∈ =
≡ ⋅  i.e., *

1w  and *
2w  are 

optimal solutions of the composite one-criterion 

problems (23), (25), (26) and (24)-(27), respectively. 

Then, by virtue of the results of the previous sections, 

we can state that Pareto optimal solution of the problem 

(23)-(27) (therefore, of the initial problem (7)-(9), due 

to one-to-one transformations (21), (22)) is the optimal 

solution of the following one-criterion problem of 

linear programming: 

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) }

1 1 2

1 2 1 1 2
1

3 2 1 5 3 2 1 6

min
K n

i K n
i

i K n i K n

M z

z z

+ ⋅ − +

+ ⋅ + ⋅ − +
=

+ ⋅ + ⋅ − + + ⋅ + ⋅ − +

 ⋅


+ −


    (29) 

subject to: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

1

1 1 1 1 1
1

2 1 1 2

1

2 1 1 1 3 2 1 3
1

* * *
1 1 13 2 1 5 3 2 1 6

1

2 1 1 2 3 2 1 4
1

π

, 1, 1 ; 1,

i
k
i m k n i k n i K k n

m

k
ii K k n

K n

j K n K n
j

i K n i K n

K n

j j K n K n
j

m z z z

z b i n k K

z z z

w z w z w

z z zξ

−

+ − ⋅ − + − ⋅ − + + ⋅ −
=

+ ⋅ + + ⋅ − +

⋅ −

⋅ + ⋅ − + ⋅ + ⋅ − +
=

+ ⋅ + ⋅ − + + ⋅ + ⋅ − +

⋅ −

⋅ + ⋅ − + ⋅ + ⋅ − +
=

⋅ + +

+ = ∀ = − =

− +

+ ⋅ − ⋅ =

⋅ + +

−







( ) ( ) ( ) ( )

( ) ( )( )

* * *
2 2 23 2 1 5 3 2 1 6

0, 1, 3 2 1 6

i K n i K n

j

w z w z w

z j K n

+ ⋅ + ⋅ − + + ⋅ + ⋅ − +















 ⋅ + ⋅ =

 ≥ ∀ = ⋅ + ⋅ − +


 (30) 

where, { } ( ) ( )( )
1

1, 3 2 1 6

def

i i K n
z z + = ⋅ + ⋅ − +

≡ ∈  is an introduced 

for the convenience column-vector, first ( )1K n⋅ −  

elements of what form the desired vector y  of the 

problem (23)-(27), i.e., i iz y=  for ( )1, 1 ;i K n∀ = ⋅ −  

as M  in Eq. (29), we can choose sufficiently great 

number, for example, the following number: 

( )
{ }

( )
{ }

( )
( )

( ){ }
( )

{ }

* *
1 1 2

1, 1

,
1, 1,1, 1
2, 1 1, 11,
1, 1

max 1; ; ; max

max ; max ; max

def

i
i n

k k
i i k i

k K k Ki n
i n i nk K
m i

M K w w a

b mπ η

= −

= == −
= − = −=
= −

≡ + 









 (31) 

Remark 5. It is not difficult to see that the 

one-criterion problem (29)-(31) is formulated in the 

form of the so-called Big M Method [50]. Obviously, 

with ( )* 0 1,2iw i≥ =  the point 

( ) ( )

( )

( ) ( )

1 1

12 1 1 2

3 2 1 61 1 * *
1 2 1 1 2

1

0, ,0, , ,

, , , , , ,0,0

n

nK n

T

K nK
n

K n

z a a

b b b w w

−

−⋅ + ⋅ − +

⋅ + ⋅ − +
− +

⋅ −


=




 ∈


  

 

 is an 

extreme point of the convex set, determined by the 

system (30). Exactly, this point should be chosen as the 

origin extreme point for applying the simplex 

algorithm. As a strict explanation of the Big M Method 

as well as the conditions of its use can be found, for 

instance, in the works [50, 51], we will not concern 

these questions in our work. EOR. 

Remark 6. In the problems (29)-(31), the number of 

the desired variables is ( ) ( )( )3 2 1 6 ;K n⋅ + ⋅ − +  the 

number of essential constraints is ( ) ( )( )1 1 2 ;K n+ ⋅ − +  

the number of the source data is 

( ) ( )1 3 4
5

2

n n K
n

 − ⋅ ⋅ + ⋅ 
+ + 

 
, ( )( )2 1 2n K n− ⋅ + +  of 

which have to be given a priori and 
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( ) ( )1 2
3

2

n n K − ⋅ + ⋅ 
+ 

 
 have to be calculated 

beforehand. Therefore, the investigated problem can be 

considered as a large-scale problem: for instance, even 

with scanty data (from the point of view of modeling 

and solving of real-life practical problems in the 

modern transport logistics) 30,K =  100n = , we will 

have to solve an one-criterion problem (29)-(31) with 

9,114 variables, 3,071 essential constraints and 

451,545 source data. That is why the idea of using not 

traditional simplex method, but one of its modified 

variants or decomposition algorithms [52-56], applying 

the parallelizing technique [57-62] as well as 

high-performance computing, for solving the problem 

(29)-(31) certainly makes sense. These special 

algorithms, as a rule, let make the problem solving 

substantially less computationally intensive and to 

compactly place the information in the computer's 

memory. EOR.  
So, let the vector ( ) ( )3 2 1 6. K noptz ⋅ + ⋅ − +

+∈  be the solution 

of the problems (29)-(31), found but a decomposition 

algorithm or the parallelizing realization of the simplex 

method. Then, ( )( ). .
1 1,...,Pareto opt opt

K ny z z ⋅ −=  is a trade-off 

solution of the bi-criterion problems (23)-(27). 

Therefore, by using the inverse transformation (22), we 

can uniquely determine Pareto optimal transportation 

plan ( )( )1 1 :Paretox K n+∈ × −  

( ) ( ) ( )

. .
1 1

. .
1 1 1 1

opt opt
n

Pareto

opt opt
K n K n

z z

x

z z

−

− ⋅ − + ⋅ −

 
 
 =
 
 
 


  



     (32) 

6.2 Transforming the (K+1)-Criterion Problems (2), 

(7), (8) into a Simple Linear Programming Problem 

By analogy with Section 6.1, we, firstly, reformulate 

the (K+1)-criterion problems (2), (7), (8) in new 

variables { } ( )1, 1
,j j K n

y
= ⋅ −  in which the index j  is 

calculated in accordance with Transformation (21), and 

then reduce the obtained (K+1)-criterion problem to a 

simple linear programming problem using the Big M 

Method once again. 

Thus, in new variables, we have the following 

(K+1)-criterion problem: 

( )
( )1

1
1

max
K ndef

j
j

w y y
⋅ −

=

  ≡ 
  

         (33) 

( ) ( ) ( )

1

2 , 1 1
1

min , 1,
ndef

k
k i i k n

i

w x y k Kη
−

+ − ⋅ −
=

 
≡ ⋅ ∀ = 

 
  (34) 

subject to: 

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )( )

1 1
1

1

1 1 1 1
1

0

1, 1 ; 1, 1 ; 1,

K

ii j n
j

i
k k
i im k n i k n

m

j

y a

m y y b

y

i n j K n k K

π

+ − ⋅ −
=

−

+ − ⋅ − + − ⋅ −
=


≤



 ⋅ + ≤


≥

∀ = − = ⋅ − =



  (35) 

where, ( )πk
i m  and ,k iη  are calculated using, 

respectively, Eqs. (26) and (27).  

As it was done in the previous subsection, we use the 

goal attainment method of Gembicki as well as the Big 

M Method, but now instead of the (K+1)-criterion 

problems (33)-(35), we will have the following 

one-criterion problem: 

 
( )

( )

( ) ( ) }

1

2 2 1
1

3 1 1 3 1 2

min
K n

i K n
i

K n K K n K

M z

z z

+ ⋅

+ ⋅ ⋅ −
=

⋅ + ⋅ − + ⋅ + ⋅ − +

 ⋅


+ −


    (36) 

subject to: 

( ) ( ) ( )

( ) ( )

1 1 1
1

2 1 , 1, 1 ,

K

i j n i K n
j

ii K n

z z

z a i n

+ − ⋅ − + ⋅ −
=

+ ⋅ ⋅ −

+

+ = ∀ = −


 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )( )

1

1 1
1

1 1 1

1

π

,

1, 1 ; 1, ,

i
k
i m k n

m

i k n i K k n

k
ii K k n n K

m z

z z

z b

i n k K

−

+ − ⋅ −
=

+ − ⋅ − + + ⋅ −

+ + ⋅ − + ⋅

⋅

+ +

+ =

∀ = − =


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( )

( ) ( )

( ) ( )

( )

1

2 1 1 1
1

*
13 1 2 3 1 1

* *
1 13 1 2 ,

K n

j K n
j

K n K K n K

K n K

z z

z w z

w z w

⋅ −

⋅ + ⋅ − +
=

⋅ + ⋅ − ⋅ ⋅ + ⋅ − +

⋅ + ⋅ − +

−

+ + ⋅

− ⋅ =


 

( ) ( ) ( )

( ) ( )

( )

1

, 1 1 2 1
1

*
23 2 2 3 1 1

* *
2 23 1 2 , 1, ,

n

k i i k n K n n
i

k
k K n K K n K

k k
K n K

z z

z w z

w z w k K

η
−

+ − ⋅ − ⋅ ⋅ − +
=

+ ⋅ + ⋅ − ⋅ ⋅ + ⋅ − +

⋅ + ⋅ − +

⋅ +

+ − ⋅

+ ⋅ = ∀ =


 

( )( )0, 1, 3 1 2jz j K n K≥ ∀ = ⋅ + ⋅ − +  (37) 

where, 

( )

( )

25

1
*
1

1

argmax ;
K ndef

j
y Y j

w y
⋅ −

∈ =
≡   

( )
( ) ( )

25

1
*

2 , 1 1
1

arg min ,
ndef

k
k i i k ny Y i

w yη
−

+ − ⋅ −∈ =
≡ ⋅  

1,k K∀ = , the set ( )25Y  is determined by Eq. (28); the 

number M  is sufficiently great and can be considered 
to be, for example, 

( )
{ }

( )
{ }

( )
( )

( ){ }
( )

{ }

* *
2 1 2

1, 1, 1

,
1, 1,1, 1
2, 1 1, 11,
1, 1

max 1; ;max ; max

max ; max ; max

def
k

i
k K i n

k k
i i k i

k K k Ki n
i n i nk K
m i

M K w w a

b mπ η

= = −

= == −
= − = −=
= −

≡ + 









 (38) 

Mentioned in Remarks 5 and 6, inferences with the 

corresponding obvious corrections of quantitative type 

stay right for Problems (36)-(38), too. 

Supposing that the vector ( )3 1 2. K n Koptz ⋅ + ⋅ − +
+∈  is the 

solution of Problems (36)-(38), the desired 

compromise plan of transportation for the initial model 

(2), (7), (8) is the matrix ( )( )1 1Paretox K n+∈ × −  of  

Eq. (32). 

7. Ill-Posedness Research and Construction 
of the Regularized Solution 

As it is well known [63-65], a mathematical problem 

which corresponds to physical or economic, etc. reality, 

has to satisfy the following basic requirements: 

 The solution must exist; 

 The solution should be uniquely determined; 

 The solution should depend continuously on the 

data (requirement of stability). 

The first requirement expresses the logical condition 

that not too much, i.e., no mutually contradictory 

properties, is demanded of the solution. The second 

requirement stipulates completeness of the problem: 

leeway or ambiguity should be excluded unless 

inherent in the physical or economic, etc. situation 

(cases in which uniqueness is not a proper requirement 

do occur). The third requirement, particularly incisive, 

is necessary if the mathematical formulation is to 

describe observable natural phenomena. Data in nature 

cannot possibly be conceived as rigidly fixed; the mere 

process of measuring them involves small errors. For 

example, prescribed values for space or time 

coordinates are always given within certain margins of 

precision. Therefore, a mathematical problem cannot 

be considered as realistically corresponding to physical 

or economic, etc., phenomena unless a variation of the 

given data in a sufficiently small range lead to an 

arbitrary small change in the solution. This requirement 

of “stability” is not only essential for meaningful 

problems which describe the real processes, but also 

for approximation methods. Any problem which 

satisfies our three requirements will be called a 

properly posed (or well-posed) problem in the sense of 

Hadamard. Problems that are not well-posed in the 

sense of Hadamard are termed ill-posed. If the problem 

is well-posed, then it stands a good chance of solution 

on a computer using a stable algorithm. If it is not 

well-posed, it needs to be re-formulated for numerical 

treatment. Typically this involves including additional 

assumptions, such as smoothness of solution, etc. [63]. 

Obviously, if the investigated problem is about bulk 

cargo, then some of the source data, for example, at 

least { } ( )1, 1i i n
a = −

 and { } ( )

1,

1, 1
,

k Kk
i i i

b
=

= −
 are given 

approximately. Generally, it makes sense to suppose 

that costs ( ){ } ( )

1,1, 1
, 1,

k Ki n k
i i j j n i

c
== −

+ = −
 are given 

approximately too and that we know the order of 
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approximation of the source data. 

It is not difficult to see that one-criterion problems 

(29)-(31) and (36)-(38) can be rewritten in a more 

compact form: 

( ){ }

{
( ) ( ) }1

min

:

, , ,

z Z

def

L z

Z z Az u

A u

β

αα β α β

∈

+





≡ ∈ =


∈ × ∈ ∈




  

 (39) 

where: in the case if the problem (29)-(31) is being 

investigated, then the objective function ( )L z  has the 

form (29); the matrix A  contains the variables held 

constants in the left side of the system (30); the 

column-vector u  contains constants in the right side 

of the system (30); ( ) ( )1 1 2;K nα = + ⋅ − +  

( ) ( )3 2 1 6;K nβ = ⋅ + ⋅ − +  in the case if the problem 

(36)-(38) is being investigated, then the objective 

function ( )L z  has the form (36); the matrix A  

contains the variables held constants in the left-hand 

side of the system (37); the column-vector u  contains 

constants in the right side of the system (37); 

( )1 ;K nα = + ⋅  ( )3 1 2.K n Kβ = ⋅ + ⋅ − +  

Let’s suppose that instead of the problem (39) with 

the precisely given data, we have the following 

approximating problem with given approximately 

source data: 
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 (40) 

where in the capacity of the proximity measure 

between the corresponding elements (vectors, matrixes) 

is chosen the Euclidean metric: 

,A A u uδ δδ δ− ≤ − ≤      (41) 

Remark 7. In the problem (40), (41) for simplicity, 

the extent of error δ  was set equal for all source data. 

Actually, the error estimate is determined by the vector 
( )1actual α βδ ⋅ +

++∈  with appropriate choice of norm. 

EOR. 

Obviously, because of source data precision

{ }; ,A uδ δ  the request of the system Az u=  to be a 

linearly independent system is an unlawful request, so 

establishment of this fact is practically impossible. 

Besides, because of source data precision, the system 

A z uδ δ=  appears to be an inconsistent system. In other 

words, the first requirement for well-posedness in the 

sense of Hadamard is broken. Further, as it is shown in 

Ref. [66] during the process of solving a particular 

practical problem (in this work, a problem of finding 

optimal quarterly plans on multiproduct manufacturing 

was investigated) using the simplex method, is possible 

a situations, when for relatively close (with error less 

than 1%) optimal values of the objective linear function 

( )L z  the amount of items planned to be manufactured 

in accordance with these optimal plans varies within 

the range of some hundreds, so the investigated 

problem appears to be an unstable problem, i.e., the 

third requirement for well-posedness in the sense of 

Hadamard is broken. Finally, if we suppose that all 

source data are given precisely and ,Z ≠ ∅  then, as 

the following example shows [67, 68], the problem (39) 

(all the more the approximating problem (40), (41)) can 

have not only one solution: minimum of the objective 

function ( ) 3L z z=  on the set 

{ }3
1 2: 0Z z z z+= ∈ − =  is equal to zero and is 

reached in any point ( )1 1 1, , 0 , 0,z z z z= ∀ ≥  i.e., on the 

half-line determined by the equation 2 1 3, 0.z z z= =  

In other words, the second requirement for 

well-posedness in the sense of Hadamard is broken, 

and, therefore, in cases like this, it is required to impose 

additional condition on the desired solution. In case of 

the investigated problem being a problem of optimal 

planning (as the problem investigated in this work is), 

the additional condition, needed for ensuring of 

unambiguity, can be formulated in the following way: 

let a cargo transportation or any other work be 

performed according to the plan *z  and let it be 
required to change this plan, because of change of the 

source data. Obviously, new source data correspond to 
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new optimal plans. Thus, it is absolutely natural to 

choose the plan which is the least different from the 

original plan *,z  because this criterion of choice will 

entail the least costs of organizational reconstructions, 

if they were not considered in the formulation of the 

problem. As the measure of deviation of the new newz  

and the original *z  plans can be accepted any 
positively definite quadric quantic 

( ) ( )* *
,

1 1

,new new
i j i i j j

i j

s z z z z
β β

= =
⋅ − ⋅ −  particularly (for 

instance, if , 0i js =  with i j≠ ), can be accepted any 

weighted second-order deviation 

( )2 2* *

1

.new new
i i i

i

s z z z z
β

=
⋅ − = −  In other words, it is 

natural to demand for the plans newz  and *z  
implementation of the inequality 

( ) 22 39* * ,newz z z z− ≤ −  where vector ( )39z β
+∈  

denotes any solution of Problem (39), i.e., 

( ) ( )39 min .
Z

z Arg L z∀ ∈  For Problem (39), this vector 

newz  is called a normal solution with respect to the 

original vector *z  [63, 65-70]. In future, we will use a 

shorter name “normal solution” and write it as .normalz  

Obviously, in case of Problem (39) having an unique 

solution, it coincides with the normal solution .normalz  

If Problem (39) has many solutions, then there 

obligatory exists its normal solution :normalz  it follows 

from the fact that intersection of a finite number of 

closed sets is a closed set [71], and the set on which the 

objective function ( )L z  reaches its minimum is the 

intersection of three closed sets { }: ,z Az u=  

{ }: 0, 1, ,iz z i β≥ ∀ =  ( ){ }*: ,z L z L=  where *L  is 

the lower bound of the values of ( )L z  on the set .Z  It 

is not difficult to see that the normal solution of 

Problem (39) is determined unambiguously [67]. 

Indeed, assuming that Problem (39) has two different 

normal solutions (1)normalz  and (2) ,normalz  we get that: 

any point ( ) ( )(1) (2)1 , 0,1normal normalz z zσ σ σ= ⋅ + − ⋅ ∈  

of the segment (1) (2),normal normalz z    satisfies the 

essential constraints as well as the sign constraints 

0;z ≥  objective function ( )L z  reaches its maximum 

at all points of the segment (1) (2), ;normal normalz z    the 

equality * (1) * (2)normal normalz z z z− = −  holds, so it 

follows that: 
(1) (2)

* (1) (2),
2

normal normal

normal normal
z z

z z z
+

− =  

in the bisecting point of the segment 

(1) (2),normal normalz z    we have 

(1) (2)
(1) * * .

2

normal normal
normal z z

z z z
+− > −  

Subject to (1) (2)normal normalz z≠ , the inequality 
contradicts the statement that for Problem (39), the 

vector (39) (1)normalz  is a normal solution with respect 

to the original vector *.z  

Thus, for a normal solution normalz , two first 
requirements for well-posedness in the sense of 

Hadamard are satisfied. Summing up the 

above-mentioned, we can say that Problem (40), (41) 

with given approximately source data does not let us 

neither judge whether the solution of Problem (39) with 

given precisely source data is stable, nor judge whether 

it is unique even, if Problem (40), (41) has these 

properties. The exact solution of Problem (40), (41) 

with given approximately source data, as it was shown 

above, is inefficient for the investigation of    

Problem (39) with given precisely source data. From 

the point of view of available data, as the source data of 

Problem (39) can serve any source data set { }; ,A u  

satisfying the condition (41). We should note that, even 

if Problem (39) primordially was steady, adding any 

amount of linearly dependent equation to the essential 

constraints of Problem (39) makes it an unstable 

problem, though it stays equivalent to it in the classical 

sense. Therefore, it is necessary to develop such 

approach for solving problems of linear programming 

(particularly, Problems (39) and (40), (41)) for which 

an assumption about linear independence of the 
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essential constraints is not needed. Below we shortly 

describe a stable method of finding approximate 

normal solution both for Problems (39) and (40), (41). 

At first, this method was described in the fundamental 

article [67]. 

Let’s consider Problem (39), where the source data 

are given precisely. The point of this stable method of 

finding approximate normal solution of this problem 

consists in taking for an approximate solution the 

following element  

{ }{
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: 0 1,
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z z i
z arg Az u
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= −  
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where the parameter 1r ++∈  is called a regularization 

parameter; 1λ ++∈  is a parameter; vector 

{ }* *

1,i i
z z

β=
=  is the fixed original vector, with respect 

to which the normal solution is searched. 

As the parametric functional 

[ ] ( ) ( )( )2 2 *; , , 1 ,
def

rM z A u L Az u r L z z zλ λ≡ − + ⋅ + ⋅ + −  

called Tikhonov functional, is a quadratic functional 

and holds [ ]; , , ,zrM z A u Lλ
→∞⎯⎯⎯→∞  unique existence 

of the element regularizedz  from Eq. (42) is obvious. 
Remark 8. In Eq. (42), the positively definite quadric 

quantic [ ] ( )2*

1

def

i i i
i

z s z z
β

=
Ω ≡ ⋅ −  is called a stabilizing 

functional. If we suppose that choosing criteria 

(objective functions), not all factors are considered, for 

example, an absolutely reasonable demand of possible 

organizational reconstruction being minimal when, due 

to some reasons, the source data were somehow 

changed, then the expression ( )2*

1

1 i i i
i

s z z
β

λ
=

 
⋅ + ⋅ − 
 

  

presented in Eq. (42) can be interpreted as a correction 

to the influence of neglected factors in the objective 

function ( )2L z  proportionally to the magnitude 
1λ ++∈  of expert evaluation. Then, the extent of 

deviation of the previous criterion (which was chosen 

without consideration of all factors) from the new 

criterion can be determined as the least number ,λ  

such that ( ) ( ) [ ]( )1 .old newL z L z zλ− ≤ ⋅ + Ω  Presence 

of one in the right side of this inequality is necessary, 

because, if * 0,z Ω =   then, actually, ( )* 0.oldL z ≠  

EOR. 

Substantiation of the described above method of 

finding approximate normal solution of Problem (39) 

with given precisely source data follows from the 

Tikhonov’s theorem of normal solution in the case of 

precise source data [67]. 

Now we consider Problem (40), (41), where the 

source data are given approximately. The point of the 

stable method of finding approximate normal solution 

consists in taking in the capacity of an approximate 

solution the 

{ }{
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   (43) 

where 1λ ++∈  is a parameter; vector { }* *

1,i i
z z

β=
=  

is the fixed original vector with respect to which the 

normal solution is sought; as the regularization 

parameter 1r ++∈  can be taken a positive root of the 

equation: 

( ) ( ) 2
22 2 *1 1r r rA z u L z z zδ δ δ λ − = ⋅ + + ⋅ + − 

 
 

{ }
2

: 0 1,
min

iz z i
A z uδ δ

β≥ ∀ =
− −

       
 (44) 

Eq. (44) is called a generalized residual and the 

method of finding the regularization parameter 
1r ++∈  as a root of Eq. (44) is called generalized 

residual principle and, at first, was described in the 

works [72, 73]. 

Substantiation of the described above method of 
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finding approximate normal solution of Problem (39) 

with given approximately source data follows from the 

Tikhonov’s theorem of normal solution in the case of 

approximate source data [67]. 

6. Conclusions 

In the considered work, there is the mathematical 

model of optimal planning of multiproduct cargo 

transportation performed by ships through the given 

sea route, where every intermediate seaport is 

simultaneously a departure and destination point and in 

every of these intermediate seaports are performed 

handling operations, built. In this work, depending on 

properties and structure of the feasible solution set, are 

formulated different optimality conditions; are 

analyzed different approaches for finding efficient 

solutions (i.e., Pareto optimal solutions) and for 

efficiency checking of the obtained solution. The built 

mathematical model in this work, being a 

multi-criterion problem of linear programming, using 

the goal attainment method of Gembicki, is reduced to 

a scalar problem. Finally in this work is considered and 

substantiated a stable algorithm (on the basis of 

Tikhonov regularization) for finding an approximate 

solution of the derived scalar problem: there is shown 

applicability of this algorithm in case of given precisely 

source data as well as in case, when the source data are 

given approximately. 
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