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Abstract: Oil palm shell is an interesting organic material that can be used as aggregate for concrete. It can help mitigate the 
environmental problems caused by the concrete industry. We intend to contribute to the knowledge of OPS (oil palm shells) concrete 
studying the physical mechanic and thermal behavior. Then, this paper presents the results of investigations carried out on the effects 
of replacing by volume, CGA (crushed granite aggregate) in concrete with OPS. Then, the dry density, apparent porosity, water 
absorption, electrical resistivity, thermal parameters, flexural strength, compressive strength and static elastic modulus are 
investigated. Microscopic analysis with an SEM (scanning electron microscopic) is also conducted. The results show that replacing 
crushed granite aggregate by OPS, increases the apparent porosity of concrete. This makes the concrete lighter and the concrete 
mechanical strengths lower. SEM analysis indicates that these decreases may be the consequence of a bad bond existing between the 
cement paste and OPS aggregate. Though, the compressive strength of OPS concrete which is 28 days old is acceptable for structural 
concrete. OPS concrete is more ductile and has a better thermal behavior compared to CGA concrete.  
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1. Introduction 

Africa has currently the fastest rate of urbanization 

in the world. By 2050, his rate is intended to reach 

60 percent [1]. To face this rapid urbanization, more 

houses, infrastructures, roads are needed. Many 

kinds of building materials are used for construction. 

Concrete is among the most widely used. This huge 

popularity is due to its numerous benefits such as 

low cost, general availability and its vast range of 

applications.  
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However, the use of concrete is negated by its 

environmental impact. Concrete is typically made of 

about 12% cement and 80% aggregate by mass [2]. The 

massive concrete quantities needed every year in turn, 

means that huge quantities of natural resources will be 

used. Thus, many environmental problems will occur. 

To preserve the earth’s natural resources, waste or 

recycled materials are studied as potential construction 

material [3-5]. Researchers are interested in lightweight 

concrete. The most popular method for the lightweight 

concrete studied is the use of lightweight aggregates 

such as fly ash, expanded slag cinder, and bottom ash 

which are lighter than the conventional coarse 

aggregates [6-8]. In Africa, oil palm industry is 
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developing. Oil palm production waste consists of 

empty fruit bunch, fibers and shell. The current waste 

disposal practice includes incineration within the 

industry or by blacksmith as fuel, which contributes to 

atmospheric pollution. Using OPSs (oil palm shells) as 

aggregate in concrete can help resolve the concomitant 

environmental problems. In addition, a substantial 

amount of cost can be reduced if the weight of the 

concrete structure is decreased. Olanipekun et al. [9] 

have compared the cost of concrete made of coconut 

shells and palm kernel shells as coarse aggregates. They 

have found that a cost reduction of 30% and 42% 

respectively for concrete produced from coconut shells 

and palm kernel shells is possible. 

Many authors have compared the properties of OPS 

concrete to normal weight concrete [10-12]. For 

Mannan et al. [13], the mix design of ACI (America 

Concrete Institute) method for conventional concrete, 

is not appropriate for OPS lightweight concrete. They 

have found 13.5 MPa as the 28-day compressive 

strength although the strength of 28 MPa was planned. 

Besides, the mix design used, researchers have 

reported different grades of strength depending on the 

intrinsic properties of OPS or the curing conditions. 

For the same mix design (1:1:2) with a water/cement 

ratio of 0.5, Okpala et al. [13] and Olanipekun et al. 

[9] have obtained respectively 22.2 MPa and 15 MPa 

as concrete compressive strength at 28 days. Other 

studies have shown that OPS can be used to produce 

concrete up to 20 MPa, with a density of 1,725-2,050 

kg/m3 [14]. Recent researches show that up to 30 MPa 

concrete is achievable with the use of silica fume and 

class F fly ash [15]. It is also important to take into 

account the low value of elastic modulus (E). Only a 

few references are available on this important 

property. Teo et al. [16] showed the E-value of 5.31 

GPa. Alengaram et al. [15] showed that this E-value 

of OPS concrete can be enhanced using 5% fly ash 

and 10% silica fume. Furthermore, the OPS content of 

Alengaram et al. was higher than that of Teo et al. 

Mahmud et al. [17] showed an E-values about twice 

the value reported by Teo et al. (10.90 GPa). All these 

differences concerning OPS properties or mix design 

make it difficult to compare all the properties of OPS 

concrete from an author to another.  

A great number of studies about OPS lightweight 

aggregate concrete particularly for structure have been 

done. But, little information is available regarding 

other properties of OPS concrete such as thermal 

parameters. To examine how the locally available 

materials in western Africa can be used efficiently, 

this study concerns the influence of volume 

replacement of CGA (crushed granite aggregates) with 

OPS. Considering the same mix design, three mixes 

are made, by substituting 0%, 50% and 100% of the 

CGA by OPS aggregate. Then, the physical and 

mechanical properties of concrete such as dry density, 

apparent porosity, water absorption, electrical 

resistivity, thermal conductivity, volume-specific heat, 

flexural strength, compressive strength and static 

elastic modulus are investigated. SEM (scanning 

electron microscopic) analysis was also made. 

2. Materials and Methods 

2.1 Materials Used 

2.1.1 Cement 

The cement used was a CEM I-42.5 of the company 

CIMTOGO which was produced in accordance with 

standard EN 197-1. The cement had a specific density, 

a bulk density and a BET surface area that are 3.15 

t/m3, 1.06 t/m3 and 2.96 m2/g respectively. 

2.1.2 OPS Aggregate 

The OPS used, is a by-product from a palm oil 

industry (SIFCA), based in Ivory Coast. SIFCA 

(Societe Immobiliere et Financiere de la Cote 

Africaine) is an industrial group which operates 

throughout the chain of production of oil palm, from 

planting to marketing.  

To obtain palm oil, the process often consists of 6 

stages that are sterilization, threshing, pressing, 

depericarping, separation of kernel and shell and 

clarification [18]. Shell is one of the wastes produced 
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during this process. The shells, shown in Fig. 1 are of 

different shapes and size, depending on the breaking 

pattern of the nut. The thickness varies and depends 

on the species of palm tree from which the palm nut is 

obtained and ranges from 0.15-8 mm [19].  

In general, the OPSs were dirty, recovered with oil 

and other impurities. So, before the OPSs were used, 

they have been washed and then left under a roof for 

air drying. After that, they were sieved and only the 

aggregates with a size smaller than 8 mm have been 

used. Los Angeles abrasion testing machine has been 

used to obtain an abrasion value of the aggregate. The 

particle size distribution of the OPS aggregate can be 

seen in Fig. 2, whereas its properties are shown in 

Table 2.  

OPSs are primarily organic compounds. 

Structurally, they are composed of lignin, 

hemicellulose and cellulose. From Table 2, it stands 

out that OPSs are  52.3% lignin, with only 25% 

hemicellulose and 9.1% cellulose. Lignin is difficult 

to degrade due to its complex structure. Its principle 

function in plant cell wall, is to provide rigidity and 

resistance from compression [20]. Therefore, OPSs 

are suitable as coarse aggregate for structural 

lightweight concrete. 

2.1.3 CGA (Crushed Granite Aggregate) 

OPSs were used to substitute granite aggregate 

obtained locally. The sieve analysis of this crushed 

granite aggregate has been performed based on NF EN 

933-1. Los Angeles abrasion testing machine has been 

also used to obtain an abrasion value of the 

aggregates. The particle size distribution is shown in 

Fig. 2. The physical and mechanical properties of 

CGA are also shown in Table 2.  

2.1.4 Sand 

The sand used as fine aggregate, comes from a local 

river. It has a maximum aggregate size of 5 mm. The 

particle size distribution of sand shown in Fig. 2, 

presents a poorly graded sand with a coefficient of 

uniformity Cu = 3 and a coefficient of curvature Cc = 

0.9. A sand equivalent value of 98 indicates that there 

is less clay-like material in the sand and it is 

appropriate for a concrete of high quality. The specific 

density, the bulk density and the fineness modulus of 

the sand were 2,680 kg/m3, 1,530kg/m3 and 2.90, 

respectively. 

2.2 Concrete Mix Proportions and Manufacture 

Theories on the mix design of OPS concrete are 

discussed in Refs. [12, 16, 21]. The mix design of this 

study is based on that of Teo et al. [22]. Trial mixes 

have been made to achieve a practical end result. The 

proportions used for the different concretes are 

presented in Table 3.  

Three mixes were manufactured by replacing 0%, 

50% and 100% CGA by OPSs. OPSs have a lower 

density than CGA. Therefore, the substitution has been 
 

 
Fig. 1  Sample of OPS aggregate.  
 

Table 1  Carbohydrates composition of OPS.  

Parameter Value 

Hemicellulose (%) 25.0 

Cellulose (%) 9.1 

Lignin (%) 52.3 
 

Table 2  Physical and mechanical properties of CGA and 
OPS aggregates.  

Properties OPS CGA 

Maximum size (mm) 8 8 

Bulk density (kg/m3) 560 1,510 

Specific density (kg/m3) 1,340 2,660 

Los Angeles abrasion value (%) 13 42 

Water absorption (24 h) (%) 23.3 0.7 
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Table 3  Concrete mix proportions (kg/m3).  

 Cement Sand CGA OPS Water Sp 

0%  550 913 655 0 220 4 

50% 550 913 330 165 220 5.5 

100% 550 913 0 330 220 7.15 
 

performed in volume. A water/cement ratio of 0.4 has 

been considered. To allow the concrete to be 

manufactured with this low effective water/cement 

ratio, an Sp (superplasticizer) additive was added to 

the mixing. With the objective of maintaining a 

similar consistency of concrete (slump of 0-20 mm), 

the amount of Sp was modified for each mix. 

For each mixture, coarse aggregate was introduced 

first with the sand and mixed for 2 min. Then, the 

cement is added, and they were all mixed for 2 more 

min. Later, the water with the Sp were added and 

mixed for 4 min. The concrete mixed is placed in 

moulds and vibrated. After 24 h, the samples were 

taken off the moulds and put into a water tank for 

curing. 

2.3 Experimental Tests 

2.3.1 Dry Density and Apparent Porosity Test 

Dry density and apparent porosity of concrete were 

measured using the gravimetric method (ISO 5017). 

The sample is saturated with water. The saturated 

sample is first weighed suspended under a scale and 

immersed in water (Mw). Second, it is weighed in air 

(Mo). After that the sample is left to dry in an oven 

then weighed dry (Md). The various weights read, and 

Eqs. (1) and (2) allow the dry density and apparent 

porosity to be found.  

ௗߩ ൌ ௗܯ כ ௢ܯ௪/ሺߩ െ  ௪ሻ (1)ܯ

ߝ ൌ ௗܯ כ ௢ܯ௪/ሺߩ െܯ௪ሻ (2) 

where, ߩௗ  is the apparent density of the concrete 

sample; ߩ௪  is the density of water; and ߝ  is the 

apparent porosity of the concrete sample. 

2.3.2 Bulk Resistivity Test 

The bulk resistivity along the longitudinal axis of 

40  60 mm2 cylinders has been measured. This test 

was conducted using the testing procedure described 

by Spragg et al. [23]. A set of plate electrodes is 

placed at the ends of a cylindrical specimen and a 

potential difference is applied to the cylindrical 

specimen, thereby producing a current flow through 

the cylinder (Fig. 2). The potential difference and 

resulting current can be used to obtain the electrical 

resistance through the cylinder [23]. Then, this 

electrical resistance can be related to the resistivity 

using the approach shown in Eq. (3): 

ߩ ൌ ܴ ൈ
ܵ
ܮ

 (3) 

where, ρ is the specimen resistivity, R is the measured 

electrical resistance, S and L are respectively the 

cross-sectional area and the length of the specimen. 

2.3.3 Capillary Water Absorption Test 

Water absorption test is carried out according to 

RILEM TC 116-PCD. This test method allows 

calculating the way that concrete samples can absorb 

water by capillarity. It measures the mass of water 

absorbed as a function of time. The method has been 

applied on 40 mm  60 mm cylinders, immersed in a 

water container on a maximum height of 3 mm   

(Fig. 3). The side faces of every specimen were 

covered with a self-adhesive aluminium sheet to 

ensure that the water only flows along one direction 

and avoid evaporation through the side faces. The 

mass of water absorbed is determined by successive 

weighing of the samples. 
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Fig. 2  Determination of electrical resistivity of concrete.  
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2.3.4 Thermal Conductivity, Specific Capacity and 

Thermal Diffusivity Test 

In this study, Hot Disk TPS 2500 (Fig. 4) was used 

to measure the thermal conductivity, specific capacity 

and thermal diffusivity of concrete. The source of heat 

is an insulated nickel double spiral. This spiral is used 

for transient heating and precise temperature readings. 

The probe is placed between the plane surfaces of two 

dry sample pieces (40 mm  20 mm cylinders) of the 

concrete under investigation.  

2.3.5 Mechanical Tests of Concretes 

Compressive strength was measured on 50 mm  

100 mm cylinders as per NF EN 12390: part 3. The 

properties were determined at the ages of 7, 14, 28 and 

90 days. A hydraulic compression machine with a 

maximum capacity of 200 KN has been used at a 

constant speed load (0.25 mm/min).  

To obtain the modulus of elasticity and the ductile 

behavior, 50 mm  100 mm cylinders were 

instrumented with three LVDTs (linear voltage 

displacement transducers). During a compression test, 

the stresses and strains were recorded and the slope  of 
 

Concrete specimens recover with aliminium 
sheet

Water

3 mm

 
Fig. 3  Water absorption test on cylinder samples.  

 

 
Fig. 4  Hot disk for measuring thermal properties.  

the secant to the stress-strain curve was determined. 

The flexural strength was measured on prismatic 

specimens of 40  40  160 mm3 cured 28 days, 

according to NF EN 12390: part 5. 

For each test, the results were an average of three 

specimens. 

3. Results and Discussion 

3.1 Physical Properties 

3.1.1 Dry Density and Apparent  

According to ASTM and ACI, structural 

lightweight concretes normally have densities less 

than 2,000 kg/m3 [14]. At 50% and 100% of granite 

aggregate substitution, the apparent density of OPS 

concrete decreased from 2,240 kg/m3 to 1940 and 

1,840 kg/m3 respectively (Table). Therefore, OPS 

concretes containing 50% and more OPS aggregate 

can be used as structural lightweight concrete. The 

apparent density of OPS concrete decreased as the 

granite aggregate replacement increased. Indeed, OPS 

aggregate has a density of 1,340 kg/m3 and this is 

approximately 50% lighter compared to the CGA. 

Consequently, concrete using OPS as aggregate will 

be more lightweight than CGA concrete.  

On the contrary of apparent density, the porosity 

of OPS concrete increased proportionally compared 

to the substitution by OPS. Porosity increases from 

11% for 0% OPS substitution to 14% for 50% OPS 

substitution and 17% for 100% OPS substitution 

(Table 4). This increasing porosity can also explain 

density decrease. The higher amount of pores in 

OPS concrete lightens the composite. This higher 

porosity of OPS concrete is due in part to air 

content. In fact, the irregular shapes of OPS hinder 

the full compaction of concrete, and contribute to 

higher air content. Moreover, as shown by water 

absorption (Table 2), OPSs are porous materials 

which may generate air entrapment inside concrete 

[24]. 

3.1.2 Electrical Resistivity 

In general, the inherent electrical resistivity of 
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OPS aggregate and the cement matrix. The poor 

mechanical properties of the OPS used, did not 

improve the elastic modulus of the composite. 

However, this low value of elastic modulus makes the 

OPS concrete a more deformable material. 

Eq. (5) proposed by Alengaram et al. [15], based on 

CEB/FIP model code formula, predicts a modulus of 

elasticity close to our experimental results. 

௥݂ ൌ 0.46 כ ට ௖݂௨
ଶయ
 (5) 

where, E is the modulus of elasticity (MPa), fcu is the 

cube compressive strength and w is the air dry density 

(kg/m3). fcu has been converted to a cylindrical 

compressive strength (fbu) using fbu = fcu*0.8. 

4. Conclusions 

In this work, different properties of OPS concrete 

with OPS replacement of 0%, 50% and 100% by 

volume of granite aggregate were studied. The 

experimental investigations have shown that the 

porosity of concrete containing OPS increases with 

the content of OPS. As OPSs are lighter than CGA 

and because of the porosity induced, the concrete 

density is less than 2,000 kg/m3 with the replacement 

of 50% or more of the aggregate. Even when 100% 

OPS aggregate is used, OPS concrete density is 

acceptable for a structural lightweight concrete. On 

the opposite of what was expected, the electrical 

resistivity of OPS concrete is enhanced. This predicts 

a good resistance to chloride diffusion. 

The addition of OPS shows positive influence on 

lowering the thermal conductivity and enhancing the 

volumetric heat capacity of concrete. Replacing 100% 

of normal aggregate by OPS lowers thermal 

conductivity of about 28%. Thus, OPS concrete can 

be considered as a potential insulator material. 

Losses in compressive and flexural strength of OPS 

concrete have been found. These reductions are 

partially due to the density of the concrete which 

becomes lighter when OPSs are used. Otherwise, this 

research has highlighted a weak bond between the OPS 

and the concrete, which is responsible for an early 

failure of the sample. Although, the 28-day 

compressive strength of all the specimens is greater 

than 20 MPa, according to ASTM C 330, OPS concrete 

can be used as structural lightweight concrete.  

The results have also showed that the ductility 

behavior of concrete is improved with the use of OPS. 

Under compression load, OPS concretes do not fail 

abruptly after the curve pic, in the contrary of CGA 

concrete. 
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