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Abstract: This paper proposes a novel dynamic control approach for a cable-driven robot with high redundant actuation and cable
tension limitations to perform tracking task while interacting with environment. In order for a cable-driven exoskeleton robot to
execute the task smoothly and safely, it is necessary to consider the tracking motion performance as well as passivity when
interacting with the environment under the conditions of the actuation cables’ redundancy and the pulling limitation. With the
additional consideration of the maximum limitation of the cable tension, cable-driven robot actually can only apply a certain range of
feasible wrench on the external environment, which makes the task executed by robot be restricted. In order to make designed
wrench be feasible and keep the desired trajectory tracking ability, we present a new control method by extending PVFC (passive
velocity field control) method considering tracking stability and passivity. The approach augmented a higher dimensional virtual
flywheel dynamics in a specific orthogonal complement space of the cable’s actuation space. After the final adjustment of the
designed wrench with respect to the cable’s constraint, this method is capable of driving the cable robot to complete the trajectory
tracking task and realize the passivity.
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1. Introduction (1) Cable has an inability that it can only actuate

. robots with positive tension force but not push.
In recent years, researches on cable-driven robot
. oo (2) In order to make the system completely

have been attracted many attentions. This kind of the . o

L ) . restrained, it is necessary to add the redundant cables
robot system utilizes cables to drive the moving )

] o ) into the system.

platform that brings some merits including:

(1) Lightweight,
(2) Reduced end-effector inertial as compared with

For example, the m degree of freedom system driven
by n cables is completely restrained when n > m+1.

o In fact, lacking of the compression ability of the
rigid armes, . .
. . cables makes the analysis be complicated and causes
(3) Ease of transportation and reconfiguration, and . .
. the difficulty of building control scheme of the system.
most importantly, . . . .
) . Since this critical property, only those pose (positions
(4) Make it easy to fit with the complex i i ; ]
) o and orientations) where cables in tension are reachable.
biomechanical joint structures and so on. ) .
) ] L The set of these poses can be classified as the feasible
These merits let the cable-driven robot be utilized . ) C
) o workspace. Since cable-driven robot has the inability
on many aspects such as cable-driven rehabilitation ) . )
of pushing, the analysis of the feasible workspace,
exoskeleton robots. : ] o
o . ) which is quite important for the control of the
Similar with the muscular system, cable-driven . )
) o cable-driven robot, becomes difficult. Alp et al. [1]
robots have two important characteristics: . . o
classified the SEW (static equilibrium workspace) as

the set of the poses can be attained statically

Corresponding author: CAO Sheng, Ph.D., research fields: considering the gravity. However, in other researches
robot’s manipulator control, rehabilitation robot, cable-driven

robot. [2, 3], the set of the poses where cable tensions can
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sustain an arbitrary external wrench acted at the robot
is defined as the WCW (wrench closure workspace).
Another important type of the identification of the
feasible workspace is the wrench feasible workspace
[4, 5], which represents the set of the poses where
cable tensions can exert any bounded wrench of the
specified set.

The push inability problem of the cable also
impacts the construction of cable-driven robot’s
control scheme. Oh and Agrawal [6] proposed a
method which handles the nonnegative control input
problem of the cable-driven robot using both LP and
QP programming solver. Fang et al. [7] suggested a
method of using PD control law to control the motion
of cable-driven robot considering the optimal tension
distribution. However, the admissible zone mentioned
in this research paper may not exist in some situations,
which makes computer unable to complete the
calculation of the tension distribution.

As we know, in order to optimally build the control
scheme of the cable-driven robot, tension distribution
problem is required to be considered. Traditional
solution, like aforementioned research [6], used the
traditional LP and QP programming to compute the
one-norm (for example: the sum of all tension) or
two-norm minimal tension distribution. Whereas, the
usage of these linear programming brings some
drawbacks such as the long computation time.
Borgstrom et al. [8] proposed a method which
introduces a slack variable to enable the explicit
computation of the near-optimal feasible start point
leading to the rapid calculation of tension distribution.
This research also contributes to the computation of
the optimally safe tension distribution which
represents the tensions that are not closed to the
minimal limit of the constraint after optimization.

Although tension distribution enables the robot to
complete the desired task with the wrench in the
specified set, some complicated tasks (such as
tracking of the far desired position or the time-varying
trajectory) would make the desired wrench out of the

limitation so as the robot is unable to handle the task.
Oh and Agrawal [9] have attempted to build
iterative computational framework which first
calculates the reachable domain based on the initial
position considering the nonnegative tension input
constraint and then determines the most appropriate
desired position which is the closest one toward to the
final desired position in this feasible domain. Actually,
in this fantastic work, the position tracking task of the
cable-driven robot has been divided into a sequence of
subtasks for the sake of the generation of the
nonnegative tension. However, the algorithm
proposed in this research is complicated to calculate
the feasible

Moreover, the computation difficulty would increase

domain and nonnegative tension.
fast along with the augment of the cable’s quantity.
This research also left the problem that final desired
position moves in a trajectory out of account.

In this paper, we present a novel dynamic control
method for cable-driven robot considering how to
track the desired trajectory and to keep passivity.
Compared with the previous method handling the
position control of the cable-driven robot by considering
the complex planning of the objective target positions,
we enable the tracing of the desired velocity vector
field in a work space. Moreover, in order to handle the
safety problem of the robot when interacting with
environment such as human, we further choose the
method to realize the passivity. We augment the
system for easy transferring of tension constraint to
the wrench space and contribute to the feasible wrench
design based on the transferred condition.

The paper is organized as following. Section 2
describes the problem formulation, and analyzes some
previous methods. Section 3 presents our method of
high dimension PVFC (passive velocity field control)
of the cable driven robot. Section 4 is the conclusion
of the whole paper.

2. Problem Formulation

In this section, we first describe the dynamics and
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the constrain conditions of the cable driven robot and

review the previous proposed control approaches.
2.1 Dynamics of a Cable-Driven Robot

The dynamics of a robot manipulator interacting
with its environment can be denoted as
M(@q+Cqqqg=t+]'f (1)
where M(q) € R™™ is the inertial matrix of rigid
link, €(q,q)q € R™™ is the
centrifugal force vector. T € R™ is the applied joint
wrench exerted by the cables. J(q) € R™™ is a
Jacob matrix and f is the interaction force vector

Coriolis and

between the robot and the environment such as human
body.

In order to control the cable-driven robot, it is
necessary to specify the mathematic relationship
between the cable tension and wrench acting at the
end-effector/joints of the robot, which can be
represented as

AT =1 2)
where T € R™ is the cable tension vector of
n-dimension satisfying the inequality

Tiin =T =< Tpax 3)

Tmax = (Tmaxt: "> Tmaxn)" € R is the
maximum toleration of the cable and is related to the
material of the cable, Tyin = (Tmint, "> Tminn)! €
R" denotes the minimum limitation of the tension
which is nonnegative, regularly. T represents the
wrench vector (torque/force). A € R™™ represents

the structure matrix which can be calculated as

Ae ( —1 —1, )

—wy Xl - —w, X))

where [, denotes the tendon vector and w,

represents the center of the platform which is formed

by several connection point between the cable and the
rigid link (human arm ) to each connection point.

Basically, for the given wrench vector T € R™, the

inverse relation to compute the tension T € R™ with

m < n can be calculated as
T=A'"t+({-A%A)p 4)

Here A' denotes the pseudo-inverse of A, and

(I — A*A) = N(A) is the orthogonal complement of
A, and p can be selected as any vector, I is a unit
matrix.

Due to the input constraint of the tension of Eq. (3),
from Eq. (2), wrench will also have a limitation. The
relation between tension constraint and wrench
constraint is shown in Fig. 1 with the simple setting
that tension space has 2-dimensions and wrench has
1-dimension.

Note that, the angular ¢ between two spaces is
totally dependent on the matrix A. As shown in Fig. 1

that for a given wrench t,, there exist plenty of

y>
tension choices to execute due to the multi-selection
of p in Eq. (4). Hence, a lot of work has been
contributed to the optimization of tension distribution
to ensure all tension has been located into the
constraint box constructed by tension’s limitation.
Meanwhile, for a given tension constraint and a given
pose (structure matrix A), wrench T can be denoted
as the feasible wrench satisfies the range 7€
[Tmin> Tmax]- However, this range of the wrench may
limit the objective task of the robot. For example, if
there is a large error between the robot’s initial
position and its objective target, when using usual PD
control, we may not be possible to generate a

necessary large wrench T outside the constraint range

TE [Tmin' Tmax]-

T

L 4

Fig. 1
space.

Relationship between the tension space and torque
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2.2 Previous Works

First of all, considering the redundant actuation
problem that m < n, in some previous researches [6],
LP as well as QP programming has been used to solve
the limitation problem of the tension. This idea can be
formulated as following:

min f(p)
St Topin < ATT+ (I — ATA)P < Trax

If the objective function is selected as f(p) = c'p

)

(c is a constant vector), it is an LP problem. If
f(@) =p"Yp (Y is a positive definite matrix), it is a
QP problem.

However, no matter what the objective function is
chosen as and how the vector p varies, there may
exist some infeasible T that makes unsatisfactory
tension’s condition. Moreover, since we need iterative
computation to solve LP or QP objective functions
subjected to some conditions with inequalities, it may
be difficult to perform within real time control of the
robot.

Secondly, considering the tension limitation
problem, in order to keep the cables to satisfy the
tension constraint while the robot is executing some
tasks, it is necessary to consider the term composing
control input T (wrench). For tracking task, we
cannot set the desired position too far to make the
designed wrench too large for robot to handle it.
Hence, tracking the desired position outside the
tolerance scope is necessary to be considered.

Oh and Agrawal [9] proposed a method to solve
this problem for a 6 DOF cable-driven parallel robot
with 6 cables. The robot’s dynamics in the task space
can be determined as

MX)X +C(X, X)X + g(X) = AT (6)
where X = (x,y,z,9,0,¢) describes the position
and orientation of the end-effector, g(X) represents
Note that,

m =n = 6 here, the matrix A is invertible.

the gravity vector. since we have
They first set the control input tension vector T as
T=A"1C(X, X)X +g(X) - M(X)AX

~ M(Ons) @)

where 1 = Ayl, n=nyl, s is the control surface
defined by
s=X+AX—-X,) (8)
By imposing a relation that §=-ms, the
equilibrium at the X; will be exponentially stable
and we have
X=—-2X—-1ns 9)
Let the X4 be the input, considering the first term
of the robot’s position vector X, the transfer function
can be written as
No/o
x(r) = =
2+ (Ao + no)7T + nolo

After some analyses of the transfer function, it is

xq (1) (10)

possible to obtain the damping ratio { =1 and the
natural frequency w,, = \/m.

Then, based on the analysis of time domain solution
of the transfer function, we can get the bounds on
states:

X(t) € [xO'xd]
(1) € (x0 = Xa)wp*[Zm, —1]
where xg is the initial value of the position and Z,,

represents the maximum of the term

% - <g .\ J@j) e ft)on

2|21

FE YT Dl ety gy

Thus, we can compute the bounds on other
components of vector x and X.

Then, this research considered the translation
motion of the robot and simplified the tension
constraint as

T=A"1(M®)i+gx)=>0 (12)

This inequality is determined by X, X and some
coefficients. In order to make this inequality satisfied,
it is necessary to calculate the minimum value of T
by substituting the bounds of x, X into this
inequality. Note that when the coefficient in front of
the variable is minus, we need to substitute the
maximum value of this valuable and when the

coefficient is positive, we should substitute the
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minimum value. After substituting, we can get

D, [;3] <D, [;g] +b (13)

Note that, this research simplified the problem as
robot only moves in the x-y plane. Matrix D D,
and vector b can be calculated by the bounds of
each components in X and X. Thus, Eq. (13)
determines a feasible domain of X; based on the
initial position.

In order to track the final objective position, it is
necessary to select the closest one in the feasible
domain of x; to the final objective position. In the
research of Ref. [9], they further offered an iteration
optimization method to perform the iteration
calculation with the movement of the robot and chose
the most appropriate desired position in the calculated
scope, which is closest to the final desired position.

Although this work shows some efficiency on the
position control task, it is impossible to be used for the
trajectory tracking control problem of cable-driven
robot, especially with high dimensional redundant
tension due to the massive computation time and its
complicate analysis.

As mentioned in the previous analysis, the cable’s
tension constraint condition as well as its actuation
redundancy are two fundamental problems that we
should consider in the control design of the
cable-driven robot. If we do not design the proper
control, these two problems may constrain the

possible selection of the robot’s objective target

Xy

Xl\

Fig. 2 Reachable domains in an x-y plane.

position for some given initial positions so as to
seriously limit the robot’s task performance. By now,
the researches mainly considered only one side of the
problems, static solution of the redundancy or
dynamic control under tension limitations. In order to
make real application of a cable driven robot to
perform wider range of tasks, we need to solve the
two problems simultaneously for the dynamics of the

robot.

3. Dynamic Control of Cable-Driven Robot
Using PVFC

In order to solve the redundancy problem as well as
the tension limitation problem so as the robot can
realize more dynamic task performance under
cable-driven actuation, in this paper, we propose a
novel dynamic control approach. Here, we specify the
robot’s objective motions in a form of the velocity
vector field in the work space instead of the usual
time function. We then set an augmented virtual
dynamic subsystem with dimension n-m. For the
n-dimensional augmented dynamic system, we apply
Li’s PVFC [10] to design the control input. PVFC can
realize not only the motion tracking performance for
the real robot’s velocity to approach the objective
velocity field vector in free motion space but also the
passivity when the robot is interacting with the
environment. Finally, to keep the real robot’s cable
tension limitation, we adjust the PVFC’s control
parameter and clarify the control parameter’s possible

range.
3.1 Tracking of the Desired Velocity Vector Field

In the position feedback control of a cable driven
robot, as we analyzed in Section 2, it is difficult to
plan the desired position X, (t)for some initial
position X, (t) considering the cable tension’s
limitation.

In this paper, in order to trace the trajectory, we
formulate the objective motion of the robot as a

velocity vector field V(q) (time invariant) with
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Fig. 3 Position based desired velocity field.

respect to the robot’s position vector q. As shown in
Li’s work [10], if qeg (a
configuration manifold), then we can denote the

m-dimension

tangent space of g as Tyg at one q and desired
velocity field V is a map V:g - Tg; q = V(q)
where Tg = UgegTqg, Tg is the tangent bundle of
the manifold g.

Notice that, design of V(q) constructs a desired
velocity vector at each point in the workspace so as to
replace the task of tracking the final trajectory by the
tracing of the desired vector at each point.

In order to build the map V(q), firstly, we construct
a potential function P, (q) with respect to q and
this function is required to have the maximum value at
the desired trajectory leading P, (q)’s gradient can
have the minimum size zero at the desired trajectory
and can represent the normal vectors of the desired
trajectory. Therefore, gradient of P, (q) can be used
as one part of V. On the another side, we can also
design a perpendicular vector of this gradient as the
tangential vector of the desired trajectory which is
required to have smaller size at points away from
desired trajectory and have maximum size at the
desired trajectory. Both normal and tangential desired
vector constitute a desired velocity vector V at each

point.
3.2 Augmented Mechanical System

In order to overcome the difficulty brought by the

redundancy characteristic of the robot’s cable

actuation of Egs. (1) and (2) with m < n, we propose
to augment the system with a n-m dimensional virtual
dynamic subsystem.

MpGyn_m = Tpm = BT (14)
where we set
My = diag(my, -, m;) € RO-m>*@=m)  apnd B
represents a (N —m) X N matrix, g,_, € R®™
is the position vector of the virtual augmented
subsystem.

Therefore, the dynamic of the overall augmented
system can be formulated as

M@q+C(qq9)g=7+7. (15)
where
= _[M(q) O
M(q) —[ 0 Mp]’

c@a) =GP g
q= [qnq_m] ’

_ [Te

Te = [o]
In detail, = [q1,"", qm Gm+1," qn]", and by
combining Eqgs. (2) and (15), we have

A
B

Notice that, in order to avoid appearance of

T=AT = ()T (16)

redundancy, we should select the matrix B so that to
. (A
keep the augmented matrix ( B) full rank.

The objective velocity vector V,_,,(q) for the
augmented subsystem can be specified as follows.
Firstly, we define
V@) = V(@ " Vom(@]" (17)
as the objective velocity vector of the augmented
system, then the total objective kinetic energy can be

denoted as
_ 1— — —
K@ V@) =3V @M@V@)
- %(VTM(q)V + Voo MpVi_) = E >0 (18)

where V,_,n = p[1,-+-,1]7 and p are a scalar. For
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the given V(q) and constant E, we then can calculate

2 /- 1
p= JE(E—EVTM(q)V) (19)

Then, based on p, it is possible to calculate the
virtual subsystem’s desired velocity V,_,, and further

the desired velocity of total augmented system V.
3.3 Coupling Control Law

Before considering the cable tension limitation
problem, for the control design of the augmented
system such that the original cable robot system can
realize not only the tracking of the objective velocity
vector V in the free motion space (when 7,= 0) but
also be passive when interacting with environment,
we simply apply LI’s PVFC control rule. From Ref.
[10], we can set a control input as

1(@.9) = 6q+vRq=7.(q9) +7(q.q) (0
defining G and R as two skew symmetric matrices

1 — —
= — _PT—P_T 21
G ZE(W w') 21)

R = (Pp" - pP") (22)
where
p(a.9) = M@)q
P(@=M@QV(@
w(q.q) = M@V@ + (@ PV @

This control input leads to two results:

The trajectory tracking error of the total augmented
robot system (€,=¢q— BV ) can be globally
exponentially stable which also makes the original
system exponentially convergent to the desired
trajectory.

System can be passive when there are external
forces acting at the system.

The proof of these two results can refer to Ref. [10].

3.4 Satisfaction of the Tension Condition

3.4.1 Analysis of the Tension’s Condition
The important thing left here is to adjust T of Eq.
(20) to satisfy the tension condition (T, <T <

T nax) Which can be also represented as

(T—TTE(T—Ty) <1 (23)
where
TO — Tmax -Zl_ Tmm
E=di 1 1
= lag(ﬁ""’r_z)
and

r— max (Tmaxi) —min (Tminj)
B 2

From Eq. (2), since we select B so that A = (g) is

full rank, we have

T=A"1% (24)
For Ty, there exists an corresponding T, that
fo = ZTO (25)

Then, the cycle constraint Eq. (23) can be
represented as

(a*(6q +yRT) ~To) (A*(6A+YRA) 5

—Ty)—12<0
by considering Eq. (21).

From Eq. (26), it is clear that we can change the
value of y to make the tension condition be satisfied.
Based on this design, we can regard the left side of Eq.
(26) as a function with variable y

f@) =v?a’a-2ya™b+b"™b—-12=0 (27)
where a = A"'Rq and b =T, — A 1Gq

If there is no real solution of this function, the
adjustable range of y should not exist. Therefore,
besides the appropriate adjustment of y, we also need
to select an appropriate A.

3.4.2 Method to Satisfy Tension Condition

In order to satisfy the constraint Eq. (26), we need
to minimize the norm of the vector

AT, = (To — A"'(Gq + YRY))
as possible as we can.
If we select the inverse of the A as
Al= (A" N4K) (28)
where K = diag(kq,++,kn_m) can be selected to
satisfy the equation, the vector AT, can be rewritten
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as

ATL‘ TO - A+(me + V?Rm)
- NAK(fGnm + ]/‘T,'an)

where Tg,, and Tg,, represent the first m elements

(29)

of the vector Gqg and Rq, Tgnm and Trum
represent the remaining n — m elements of the Ggq
and Rq. N, represents the null space of the matrix
A.

Notice that, if we select A~1 as Eq. (28), A would

satisfy A = (g) which is proved in Ref. [11].

Based on Eq. (29), it is easy to know that, when we
have a certain T, the norm of AT, could have the
minimum value by appropriately selecting each

element of the diagonal matrix K to make it satisfy

K (fGnm + Vfan)

=N, (To — A*(Tgm (30)
+ me))
Thus, the minimum value of AT, can be

formulated as
AT = (I = NaN,")(To — A*(Tom +¥Trm)) B1)
From this result, Eq. (26) can be written as
lyw—vll <r
where w = (I — NyN, A Tpp
v=(-NgNs") (To— A Tgm).
From the result of reverse triangular inequality, we

(32)

m m

@

7

Fig. 4 A 2-link cable driven manipulator.

139

can get
r = llyw—vll = lyllwll — lvIl| (33)
Thus, after some algebra analysis, we obtain the
condition for the control parameter y as
r+ vl

lIwll

vl =7
lIwll

<y < (34)

Consequently, we can solve the tension’s problem
following two steps:

(1) Select y satisfying Eq. (34).

(2) Select the inverse of A as Egs. (28)-(30).

Thus, we can overcome the problem brought by the
limitation of cable tension so as to control the
cable-driven robot tracking trajectory while keeping
the passivity contemporarily.

4. Simulation Result

We verify  the
effectiveness of our method for a 2-DOF robot driven

performed simulations to
by 6 cables shown in Fig. 4 tracking a desired
trajectory in the x-y plane. The robot’s physical
parameters used for simulation are listed in Table 1,
where I; and I, represent the inertial moment of
each link’s center of gravity, m; and m, represent
mass of link, and L; and L, represent the length of

each link.

BCables
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Table 1 Physical parameter of the robot arm.

I 0.625 kgm?
I, 0.625 kgm?
my 1 kg
m, 1 kg
Ly 1 m
L, 1 m

4.1 Design of Desired Velocity Field

There exist many kinds of choices of potential
function P,(q) to determine the velocity field. In this
simulation, we set potential function as a Gaussian

2
Function P(q) = exp (— %) such that the gradient of

P(q) would have the minimum size zero at the

desired trajectory (shown in Fig. 5a), where

d = [{/(x(q) — x0)? + (y(q) —y0)? = R| and o is
a scalar to determine the Gaussian RMS (root mean

square)’s width. R and (x0, y0) represent the radius
and the centre point of the desired circle respectively.
Hence, we can calculate the normal vector V" of
the desired trajectory as
V" = grad F,(q) = gradP(x.,y,)

—2d d?
= o2 exp <_F> (V1 vn2)"

(x — x0)

where

Un1

G =20 + (y — y0)?

(a) Size of the gradient of exp (— Z—z)

Fig. 5 Design of the velocity field.

_ (ry—y0)
V(x —x0)% + (y — y0)?
The tangential vector of the desired trajectory

Un2

which is perpendicular to the normal vector can be

calculated as
2

d
vt = exp <_ ;) (anI _vnl)T

The desired velocity vector at each point can be
calculated as
V=vr+Vyt
The desired trajectory is set as a circle (shown in
Fig. 5a) with centre point [0.8, 0.8] and radius
r=0.5.

4.2 Trajectory Tracking Ability

Figs. 5 and 6 show the position tracking results of
the cable-driven robot while the control input tension
T has been designed following Eq. (24). Fig. 5 shows
the desired velocity field of a circle trajectory with
centre point (0.8, 0.8) and radius 0.5. In Figs. 6a and
6b, y is selected as y=1 and y =5 respectively,
it is obvious that both selections have a good property
of tracking the desired trajectory.

4.3 Satisfaction of Tension’s Condition

In these two selections of y, y =1 can satisfy Eq.
(36) while y =5 is disable to satisfy this

2~ T
il e s
18 ' i i ’ e

14
12F338183 1
17:: ]
08Rzzaiikiess
=
==

0 05 i P 2

(b) Velocity field of the desired circle
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06}
0.4}
0.2}

y=1
Fig. 6 Trajectory of the manipulator’s end-effector.
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Fig. 7 Upper and lower bound of the y when y isselected as y = 1.
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Fig. 8 Upper and lower bound of the y when y isselected as y = 5.

condition. We can check Figs. 7 and 8 representing

upper and lower bound in Eq. (36) while using each y.

From Figs. 7 and 8, it is clear that the selection
of y=1 satisfies the condition in Eq. (36) in total
trajectory tracking’s procedure while the selection
of y=15 is not in the y’s selectable range at the

initial time.

Figs. 9 and 10 show the cable tension’s result while
robot is tracking the desired circle with different
selection of y in control input (Eq. (24)). The upper
and lower bound of the tension value is set as 0 N and
5N.
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1»

Tension
[
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Fig. 9 Value of the cable’s tension when vy is selected as y = 1.

10/

8

Tension
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Fig. 10 The value of the cable tension (y = 5).

From Fig. 9, it is clear that when y is properly
selected, the cable tension may satisfy the tension
constraint using our method. From Fig. 10, we see that,
if y is out of the range proposed in Eq. (36), the cable
tension may not satisfy the constraint and cables
cannot generate such a PVFC’s control torque in Eq.
(24) at manipulator’s joint.

4.4 Passivity of Total Robot System

In x-y plane, we set a stiff wall at the line
x+y=1 with a stiffness ratio ke =100 and
damper ratio de = 20 to test robot’s passivity after
punching the wall. We select appropriate y = 1 in the
control torque. The trajectory tracking’s result can be
shown as below.

From Fig. 11, we see that cable-driven manipulator
performs well in trajectory tracking task while

interacting with the environment. Meanwhile, from
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Fig. 12, cables’ tension does not violate the constraint
in this procedure. From Fig. 13, it is clear that the
whole system’s kinetic energy would not exceed its
initial value after punching the wall, which means that
the passivity of the manipulator is satisfied.
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Fig. 11 Trajectory of the manipulator interacting with a
stiff wall .
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Fig. 12 Cable’s tension when robot interacting with a stiff
wall.

0.55

0,545

0548,

0,535

Energy
o
I
&

0.525

0.52

0515

D'E'IO § 10 15 20 25 30 35 40 45 50

Time (seconds)

Fig. 13 Total kinetic energy of the whole system.

5. Conclusions

In this research, we studied the dynamic control of a
cable driven robot with the cable’s tension limitation
as well as the cable’s redundancy in order to complete
the passive trajectory tracking control while keeping
the passivity. We first augmented a virtual subsystem
to eliminate the redundancy of the original system so
that we can easily transfer the tension constraint
condition into the wrench space. Then, we use PVFC
control method to handle the convergence task of the
trajectory tracking and the satisfaction of passivity.
After analyzing this PVFC’s control input in the
wrench space, we derived a condition to adjust the
control parameter so as to solve the cable’s tension
limitation. Compared with other previous researches,
this method enables the trajectory tracking control of
the cable-driven robot with an easy wrench adjustment

algorithm and no heavy optimization for tension

distribution.

We also performed simulations to verify the
effectiveness of this research. The comparison results
showed that robot driven by cables can track the
trajectory while keeping its passivity at the same time

very well.
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