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Abstract: The nonlinearity of functionalized and nonfunctionlaized graphene as well as gold nanorods were investigated using the 
Z-scan system with an Ar+ laser beam tuned at a wavelength of 514 nm in a CW (continuous wave) regime that was in resonance with 
AuNRs (gold nanorods). Z-scan experimental study indicated that functionalized graphene had a negative nonlinear refraction with 
self-defocusing performance. The result concluded that gold nanorods (average length was 36 ± 3 nm, and the average diameter was 12 
± 2 nm) enhance the thermal nonlinear properties of graphene oxide materials. Gold nanorods were proved to enhance the nonlinear 
absorption by 50%, and there was a large enhancement on the thermal nonlinear refraction and the thermo-optical coefficient (dn/dT). 
It was observed that the AuFG (functionalized graphene film with gold nanorods) presented a large thermal nonlinear refraction. The 
value of the nonlinear refraction (n1

’) of FG and AuFG samples was shifted from -0.533 × 10-7 cm2/W to -2.92 × 10-7 cm2/W. There was 
a large enhancement in thermal refraction value that was about five factors larger than the nonlinear refraction of the host material (FG) 
and much larger (4 orders of magnitude) than that for AuNRs. 
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1. Introduction 

Thermal lensing is the most significant phenomena 

that is the result of a laser beam with high power 

propagating through an absorbing material. Many 

years ago the thermal lens effect, as well as its 

applications, was extensively considered [1]. As a CW 

(continuous wave) laser interacts with a material, the 

material absorbs a small part of the laser energy, 

resulting in a local heating around the material [2]. Due 

to the fact that the material refraction mainly depends 

on temperature, laser absorption eventually results in 

raising the nonuniformity on the material refractive 

index in the transmission channel [2]. This 

nonuniformity is a dependent on the temperature and 

density of the laser transmission, resulting in the beam 

deforming. This absorbed material could be described 

as a lens that possibly increases the divergence of the 
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laser beam [2].  

Removing the produced heat efficiently has been 

considered a serious challenge to improve the 

reliability, quality and the performance of modern 

photonic, optoelectronic, and electronic systems such 

as supercomputers and cellphones [3]. Both 

experimental and even theoretical studies have proved 

that hot spots at micrometer or nanometer scale, 

created in nanoscale electronics with high power 

density due to the nonuniformity of the heat dissipation 

and generation, might lead to reliability problems and 

performance degeneration [4]. The previous cooling 

solutions, including semiconductor and metal 

nanomaterials, are limited because the thermal 

conductivity is low. Graphene has emerged to be a 

promising material of nanoscale heat spreading due to 

its enormously high thermal conductivity (κ), ranging 

from 2,000 to 5,000 W/m·K, at room temperature [3] as 

well as remarkable electrical, mechanical and optical 

properties. The great capability of handling CW laser is 
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4. Conclusions 

In this work, the results of the experimental 

investigation of thermal nonlinearity of graphene based 

materials, including nonfunctionalized and 

functionalized graphene materials without and with 

gold nanorods (NFG, FG, and AuFG) have been 

presented. Z-scan technique was used to study the 

nonlinear properties using CW laser at 514 nm 

wavelength. These results highlight the important role 

of the gold nanorods and oxygen groups in the thermal 

nonlinearity of graphene materials. There was 

enormous enhancement in the thermo-optic coefficient 

of AuFG film owing to the presence of AuNRs and 

oxygen groups. The existence of groups on the surface 

of graphene materials enhances nonlinear properties 

while decreasing its essential electrical and thermal 

conductivity. Graphene and GO with gold nanorods is 

a great solution to manage thermal energy, thus, 

excellently spreading the generated heat in electronic 

devices because of its distinctive physical properties 

like large thermal conductivity and high transparency. 
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