

Genetic Diversity and Interrelationship among Some *Dura* × *Tenera* Oil Palm (*Elaeis guineensis* Jacq.) Genotypes in Cameroon

Mondjeli Constantin^{1, 2}, Sobir Ridwani², Muhamad Syukur², Willy Bayuardi Suwarno² and Ntsomboh-Ntsefong Godswill¹

1. Institute of Agricultural Research for Development, Specialized Centre for Oil Palm Research (CEREPAH-IRAD), P.O. Box 243, Douala, Cameroon

2. Department of Agronomy and Horticulture, Bogor Agricultural University (IPB), Bogor 16680, Indonesia

Abstract: In this study, the multivariate tools, namely principal component analysis (PCA) and cluster analysis, were used to classify and measure the pattern of genetic diversity and evaluate the correlation of nine oil palm traits in 25 progenies. Fresh fruit bunch weight (FFB), kernel to fruit (K/F) and kernel to bunch (K/B) ratios showed significant variance, while bunch number (BN), kernel yield (KY) and oil yield (OY) showed little variance. Positive significant correlation between these traits and yield was appreciated through PCA, where 90.55% of the variation was explained by the first three principal components. Progeny grouping was performed and revealed three clusters of oil palm progenies. Cluster I contained progenies with high production of FFB, BN, OY and KY, while low height increment (HI) of palm trees was found in cluster II. However, most of progenies with high mean values of bunch spikelet weight (SpW), average fruit weight (AFW), K/F and K/B were grouped in cluster III. This grouping could help oil palm breeders to identify progenies with the traits of interest for breeding and commercial seed production.

Key words: Oil palm, Elaeis guineensis Jacq., cluster analysis, correlation, genetic diversity, principal component analysis.

1. Introduction

Oil palm (*Elaeis guineensis* Jacq.) is a major crop that ranks first in the world market as a product of vegetable fats and oils. An estimated 74% of global palm oil usage is for food products and 24% is for industrial purposes [1]. A mastery of the genetic diversity and structure of oil palm is particularly important for the conservation of genetic resources, identification of oil palm populations, exploration of plant genetic resources and development of future breeding programs. Significant progress in crop improvement could be achieved by exploitation of relationships between characters in a genetically diverse population [2]. In the oil palm, analysis of yield components and their relative contributions towards yield will give a better chance of selecting high yielding progeny [3, 4]. Several works have previously estimated the genetic variation of the different oil yield components of oil palm [5-7]. There is a high genetic variability among the oil palm progenies, indicating ample scope for further breeding and selection [8].

Principal component analysis (PCA) used in this study is a descriptive procedure for analyzing relationships that may exist in a set of quantitative variables. Genetic diversity could be estimated with such quantitative traits using multivariate analysis tools, like PCA and a tree diagram hierarchical clustering technology analysis [9]. These taxonomic relationships analysis tools were chosen as efficient approaches to perform genetic diversity of quantitative agronomical characters of the new oil palm progenies test population. The objective of this study was to

Corresponding author: Sobir Ridwani, professor, research fields: plant breeding and biotechnology.

Genetic Diversity and Interrelationship among Some *Dura* × *Tenera* Oil Palm (*Elaeis guineensis* Jacq.) Genotypes in Cameroon

evaluate the magnitude of genetic diversity within the introgressed $Dura \times Tenera$ (D \times T) oil palm progenies of the third selection cycle of the Specialized Centre for Oil Palm Research (CEREPAH) of Cameroon, using multivariate and clustering tools and to determine correlation among the studied important agronomic traits under Cameroonian climatic conditions.

2. Materials and Methods

In this study, 25 *Dura* × *Tenera* progenies (Table 1) of the third selection cycle of oil palm breeding program were evaluated in the experimental field of CEREPAH, Cameroon ($3^{\circ}46'-4^{\circ}01'$ N latitude and $9^{\circ}44'-10^{\circ}04'$ E longitude) from 2004 to 2014. A total of 2,730.49 mm of annual mean rainfall and 27.36 °C

of annual mean temperature were recorded during this study. The progeny test experiment was conducted in a randomized complete block design with three replications. The palms were laid down in a triangular planting system at 9 m apart with 12 palm plants per progeny. The oil palm field agronomic protocol steps were applied to achieve healthy plants. The collection of data was focused on nine oil palm agronomical traits, namely, fresh fruit bunch weight (FFB), bunch number (BN), spikelet weight (SpW), average fruit weight (AFW), kernel to fruit ratio (K/F), kernel to bunch ratio (K/B), oil yield (OY) and kernel yield (KY), following the method implemented by Mandal and Kochu [10]; while the vegetative trait, namely, palm height increment (HI) of trees, was determined in cm per year [11], following Eq. (1):

Table 1	Dura × Tenera oil	nalm progenies from	CEREPAH.	Cameroon ((2004-2014)) used in this stud	v
I abit I	$Duru \wedge reneru on$	pann progenies nom	CEREI AII,	Camer oon (2004-2014) uscu m uns stuu	y.

Progenies	Parents	Origin of <i>Tenera/Pisifera</i>	Origin of Dura	Origin of grandparent Tenera/Pisifera	Origin of grandparent <i>Dura</i>		
LM21661	$LM2T \times DA115D$	BRT10	Dabou				
LM22478	LM5100D × LM11096T	DA2356	LM9838	$DA115D \times LM269D$	$LM2T \times WI10T$		
LM21761	$LM11087T \times LM2749D$	LM9175	DA787	$LM5T \times WI15T$	$DA10D \times DA \ 3D$		
LM22099	$LM11087T \times LM7409D$	LM9175	LM7899	$LM5T \times WI15T$	LM3257D AF		
LM22001	$LM11088T \times LM2531D$	LM9175	DA507	$LM5T \times WI15T$	DA115D AF		
LM22527	$LM11088T \times LM2781D$	LM9175	DA787	$LM5T \times WI15T$	$\text{DA10D}\times\text{DA3D}$		
LM22534	$LM11088T \times LM7811D$	LM9175	LM7899	$LM5T \times WI15T$	LM3257D AF		
LM21884	$LM11089T \times LM2749D$	LM9175	DA787	$LM5T \times WI15T$	$DA10D \times DA3D$		
LM21864	$LM12963T \times LM5100D$	LM9175	DA2356	$LM5T \times WI15T$	DA115 D × LM269D		
LM22130	$LM11091T \times LM2749D$	LM9287	DA787	$LM5T \times WI1T$	$DA10D \times DA3D$		
LM21709	$LM11091T \times LM5100D$	LM9287	DA2356	$LM5T \times WI1T$	DA115 D × LM269D		
LM21706	LM11097T × LM2531D	LM9927	DA507	$LM5T \times WI10T$	DA115D AF		
LM21787	$LM11097T \times LM5100D$	LM9927	DA2356	$LM5T \times WI10T$	DA115 D × LM269D		
LM21839	$LM11097T \times LM7422D$	LM9927	LM7899	$LM5T \times WI10T$	LM3257D AF		
LM21925	$LM7422D \times LM11091T$	LM7899	LM9287	$LM3257D \times LM3257D$	$LM5T \times WI1T$		
LM21728	$LM12960T \times LM5100D$	LM9287	DA2356	$LM5T \times WI1T$	$DA115D \times LM269D$		
LM21790	$LM12960T \times LM7409D$	LM9287	LM7899	$LM5T \times WI1T$	LM3257D AF		
LM21881	$LM12961T \times LM2509D$	LM9287	DA507	$LM5T \times WI1T$	DA115D AF		
LM22575	$LM12961T \times LM2749D$	LM9287	DA787	$LM5T \times WI1T$	$\text{DA10D}\times\text{DA3D}$		
LM21852	$LM12961T \times LM5155D$	LM9287	LM2911	$LM5T \times WI1T$	$LM269D \times DA115D$		
LM21886	$LM12965T \times LM2509D$	LM9927	DA507	$LM5T \times WI10T$	DA115D AF		
LM21867	LM12965T × LM2749D	LM9927	DA787	$LM5T \times WI10T$	$DA10D \times DA3D$		
LM21874	$LM12967T \times LM2781D$	LM9927	DA787	$LM5T \times WI10T$	$\text{DA10D}\times\text{DA3D}$		
LM21836	LM12967T × LM2509D	LM9927	DA507	$LM5T \times WI10T$	DA115D AF		

$$HI (cm/year) = \frac{height at year t}{t - 2}$$
(1)

where, *t* is the age of the palm.

The recorded data for statistical analysis of all parameters were mean values. Determination of the level of interrelationship between traits was done with Pearson's correlation coefficients [12]. Cluster analysis was performed to determine genetic distance between progenies and cluster diagram was constructed following grower's method to study the dissimilarities among progenies with the help of R program statistic tool version 3.0.3. Scatter plots were visualized based on the principal components (PCs) to illustrate the variability patterns in the studied oil palm progeny test population.

3. Results and Discussion

An important prerequisite for breeding programs in crop improvement is the estimation of genetic variability. The co-association of economical traits can be evaluated on the basis of the presence of genetic variability among the traits. By this approach, very high variability was observed among the studied traits in the present study. The described basic features of statistical analysis showed a wide diversity of the nine studied traits in the 25 oil palm progenies of the test population. Traits, such as FFB (kg), K/F (%) and K/B (%) showed wide range of high variance values. On the other hand, OY (tons), AFW (g), BN, SpW (kg) and KY (tons) showed little variant values (Table 2).

Exploitation of variability for selection of these traits in the studied population could yield good response. Other studies found significant variability and diversity among Dura × Pisifera progeny populations [7, 8, 13]. Okwuagwu et al. [3] also reported significant variability and diversity in Dura × Tenera oil palm population for FFB trait. It has also been reported by Talebi et al. [14] that in quantitative study, agronomic features with high variance and significant variability can be used in breeding programs for genetic improvement of varieties. OY, AFW, BN, SpW and KY showed little variance in the present study. Little variance values were also reported by Malik et al. [15] in their genetic diversity analysis of morpho-genetic traits in Desi chickpea (Cicer arietinum).

In this study, the correlation coefficients between the nine studied traits of 25 oil palm progenies (Table 3) were estimated. OY showed positive and high significant association with FFB (P < 0.001; r =0.97), BN (P < 0.001; r = 0.85) and KY (P < 0.001; r =0.55). The result showed that OY trait is thus an expression of multi-association trait components resulting from action of various other oil palm traits. There was also high strong positive association between KY and FFB (P < 0.001; r = 0.66), BN (P <0.001; r = 0.71), KF (P < 0.001; r = 0.88) and KB (P <0.001; r = 0.91). KY was also significantly correlated with AFW (P < 0.05; r = 0.49). Moreover,

<u>L</u>	1		1 8	,	
Traits	Range	Mean \pm SE	σ^2	σ	
Height increment (cm)	21.4-35.8	25.6 ± 0.4	14.1	3.8	
Fresh weight of fruit bunch (kg)	90.3-140.3	112.4 ± 1.2	134.3	11.6	
Total bunches number	8.1-14.6	11.6 ± 0.2	2.7	1.6	
Spikelet weight (kg)	7.5-12.4	9.8 ± 0.1	1.3	1.1	
Average fruit weight (g)	6.8-9.4	8.1 ± 0.1	0.6	0.8	
Kernel to fruit ratio (%)	43.5-85.5	61.4 ± 1.2	145.6	12.1	
Kernel to bunch ratio (%)	27.6-56.1	40.3 ± 0.8	70.7	8.4	
Kernel yield (tons)	4.99-9.7	6.5 ± 0.2	3.0	1.7	
Oil yield (tons)	4.04-7.4	5.7 ± 0.1	0.4	0.6	

 Table 2 Descriptive statistics for the nine studied quantitative traits in 25 oil palm progenies from CEREPAH, Cameroon.

 σ^2 = variance; σ = standard deviation; SE = standard error.

Variables	FFB	BN	SpW	AFW	KF	KB	KY	OY
HI	0.26	0.17	0.11	0.24	0.22	0.22	0.28	0.18
FFB		0.91 ^a	-0.35	-0.16	0.24	0.30	0.66 ^a	0.97 ^a
BN			-0.65 ^a	-0.05	0.37	0.41 ^b	0.71 ^a	0.85 ^a
SpW				-0.10	-0.31	-0.29	-0.37	-0.31
AFW					0.76 ^a	0.71 ^a	0.49 ^b	-0.29
KF						0.99 ^a	0.88 ^a	0.11
KB							0.91 ^a	0.19
KY								0.55 ^a

 Table 3
 Correlation coefficients among nine quantitative traits of 25 oil palm progenies.

HI: height increment; FFB: fresh fruit bunch weight; BN: bunch number; SpW: spikelet weight; AFW: average fruit weight; KF: kernel to fruit ratio; KB: kernel to bunch ratio; KY: kernel yield; OY: oil palm yield.

^a Significant at P < 0.001; ^b significant at P < 0.05.

Table 4 Eigenvalue, proportion of variability and quantitative traits that contributed to the three principal components(PCs) in 25 oil palm progenies of Cameroon.

Traits	PC1	PC2	PC3			
Height increment (cm)	0.292	0.122	0.850			
Fresh fruit bunch (kg)	0.771	-0.583	0.177			
Total bunches number	0.807	-0.546	-0.098			
Spikelet weight (kg)	-0.532	0.348	0.567			
Average fruit weight (g)	0.339	0.847	-0.046			
Kernel to fruit (%)	0.721	0.673	-0.097	-0.097		
Kernel to bunch (%)	0.752	0.624	-0.067	-0.067		
Kernel yield (tons)	0.946	0.266	0.020	0.020		
Oil yield (tons)	0.679	-0.667	0.166			
Eigenvalue	4.169	2.851	1.130			
Cumulative eigenvalue	4.169	7.020	8.150			
Variance (%)	46.321	31.676	12.554	12.554		
Cumulative of variance (%)	46.321	77.997	90.551	90.551		

KB showed strong positive association (P < 0.001) with AFW, KF and positive significant correlation (P < 0.05) with BN. KF and BN also showed positive significant association with AFW and FFB, respectively. These results could be exploited to improve yields by indirect selection for these traits. The characters that showed positive significant correlation can be exploited to achieve high yield *Tenera* hybrid of oil palm elites for seed production in Cameroon.

PCA is a multivariate tool analysis, which helps to obtain at the same time component groups with more important traits. This approach was widely implemented by several other plant scientists for specific breeding [16-20]. In this study, PCA revealed that the first three principal components (PC) with eigenvalue greater than 1, accounted for 90.55% variation within the 25 progenies (Table 4). The first principal component (PC1) related to the following progenies: LM21674, LM22130, LM21709, LM21925, LM21728, LM21790, LM21661, as determined with 46.32% of variation, while eight characters gave positive values apart from SpW, which produced negative value. KY, BN, FFB, KB, KF and OY per progeny were the main traits that respectively contributed more to the variation among the studied oil palm progenies. PC2 explained 31.68% of all the accumulated variation, in which AFW, KF and KB were the main contributing traits in this component.

Genetic Diversity and Interrelationship among Some *Dura* × *Tenera* Oil Palm (*Elaeis guineensis* Jacq.) Genotypes in Cameroon

HI and SpW were the major traits in PC3.

Based on the first two principal components of the biplot graph, the studied individual genetic differences

were observed between $Dura \times Tenera$ progenies and can be visualized on the scatter plot (Fig. 1). An important genetic diversity was revealed by the high

Fig. 1 Scatter plot of first two principal components contributing 78% of the total variation for nine quantitative traits in 25 oil palm progenies of Cameroon.

Fig. 2 Dendrogram depicting genetic relationships of 25 oil palm progenies based on nine studied characters.

Characters	Cluster I (7 progenies)	Cluster II (16 progenies)	Cluster III (2 progenies)
Height increment (cm)	26.43 ± 1.36	25.41 ± 2.40	25.59 ± 2.37
Fresh weight of fruit bunch (kg)	123.70 ± 4.05	108.31 ± 5.23	94.45 ± 5.24
Total bunches number	13.37 ± 0.46	10.79 ± 0.48	8.94 ± 0.14
Spikelet weight (kg)	8.81 ± 0.48	10.24 ± 0.67	11.18 ± 0.74
Average fruit weight (g)	8.56 ± 0.31	7.75 ± 0.25	9.23 ± 0.25
Kernel to fruit (%)	74.35 ± 4.54	54.08 ± 3.75	78.66 ± 4.88
Kernel to bunch (%)	49.44 ± 4.03	35.26 ± 2.52	51.59 ± 3.98
Kernel yield (tons)	8.74 ± 0.79	5.45 ± 0.44	6.90 ± 0.41
Oil yield (tons)	6.20 ± 0.36	5.50 ± 0.32	4.64 ± 0.19

Table 5 Means and standard errors of the nine studied oil palm variables in the three clusters with the related number ofprogenies.

progeny dissemination in all the four compartments of the biplot graphic display. The progenies closest to each other in this biplot graph presented less or no differences in the expression of the phenotypic specific studied traits (Fig. 1). However, progenies occurring far from the origin illustrated more variability in the expression of traits. Thus, the parent crosses of these progenies can be effectively used for the hybrid breeding program, with the evidence to also improve the oil palm germplasm genetic potential.

Cluster analysis used in this study further helped to group or show dissimilarity relationships among progenies depending on morpho-genetic traits. Cluster diagram based on Euclidean dissimilarity constructed by gower's method, grouped the 25 oil palm progenies into three clusters at 0.35 dissimilarity value level (Fig. 2).

Table 5 shows the range, means and standard errors of the nine studied oil palm variables in the three clusters of the 25 oil palm progenies. The similarity matrix is presented in Table 6. Cluster I contained seven progenies, which were characterized by high production of FFB and BN per progeny, OY and KY per hectare. Cluster II comprised of 16 progenies, classified by low HI per year, moderate production of FFB and BN, progeny with moderate SpW, AFW, KF and KB, medium OY and KY per hectare. Cluster III contained two progenies, which were characterized by moderate HI and KY, low OY, FFB and BN, high mean values for SpW, AFW, KF and KB. Such hierarchical grouping of individuals is useful to oil palm breeders for the selection of progenies with traits of interest needed in the production of superior hybrid commercial varieties. Oil palm crosses can be selected from the displayed clusters.

Cluster analysis, which supported the results of correlation analysis, both indicated that OY per hectare, FFB, BN, KY, KF and KB may be improved simultaneously and put together in a single progeny for yield improvement. This was obvious from the fact that these components are positively associated with yield and with themselves. Furthermore, progenies with high mean values for these characters and those with high OY and KY were grouped in same cluster. Camillo et al. [21] reported evidence of correlation between oil palm seed trait components in their oil palm clustering study of Brazilian germplasm bank.

4. Conclusions

Through the characterization of the oil palm population of introgressed progenies in this study, some interesting crosses with specific traits were identified. The studied oil palm population was found to exhibit wide genetic diversity for most of the expressed oil palm characters. To improve overall yield, the following traits must be considered: FFB, BN, KF, KB and KY. There was a positive significant correlation between these traits and yield as confirmed

 Table 6
 Similarity matrix of oil palm progenies studied.

Progeny	LM2 1674	LM21 661	LM22 478	LM21 761	LM220 99	LM22 001	LM22 527	LM22 534	LM21 884	LM21 864	LM22 130	LM21 709	LM21 706	LM21 787	LM21 839	LM21 925	LM21 728	LM21 790	LM21 881	LM22 575	LM21 852	LM21 886	LM21 867	LM21 874	LM21 836
LM 21674	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
LM 21661	0.838 775	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
LM 22478	0.533 177	0.625 707	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
LM 21761	0.671 326	0.759 727	0.755 680	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
LM 22099	0.541 579	0.632 801	0.784 315	0.855 119	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
LM 22001	0.470 729	0.614 730	0.680 459	0.797 789	0.877 728	NA	NA	NA	NA	NA	NA	NA	NA	NA											
LM 22527	0.609 025	0.746 494	0.788 746	0.870 539	0.868 255	0.849 662	NA	NA	NA	NA	NA	NA	NA	NA	NA										
LM 22534	0.618 060	0.720 045	0.800 463	0.910 667	0.856 215	0.830 130	0.888 057	NA	NA	NA	NA	NA	NA	NA	NA	NA									
LM 21884	0.492 078	0.576 768	0.765 647	0.788 004	0.844 636	0.857 618	0.794 461	0.856 723	NA	NA	NA	NA	NA	NA	NA	NA	NA								
LM 21864	0.565 524	0.656 746	0.816 022	0.856 205	0.926 145	0.849 763	0.845 702	0.861 292	0.878 901	NA	NA	NA	NA	NA	NA	NA	NA	NA							
LM 22130	0.674 791	0.826 631	0.756 582	0.801 267	0.733 263	0.727 060	0.827 606	0.768 661	0.652 908	0.755 769	NA	NA	NA	NA	NA	NA	NA	NA	NA						
LM 21709	0.699 884	0.838 315	0.640 815	0.671 791	0.605 583	0.599 380	0.709 543	0.648 802	0.534 845	0.629 528	0.864 562	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
LM 21706	0.467 559	0.587 758	0.747 353	0.709 998	0.792 098	0.779 164	0.731 913	0.730 708	0.756 919	0.826 826	0.742 956	0.653 326	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
LM 21787	0.382 279	0.481 340	0.706 685	0.644 242	0.726 601	0.693 837	0.635 881	0.646 043	0.720 312	0.784 751	0.636 538	0.535 105	0.870 121	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
LM 21839	0.541 052	0.640 114	0.798 823	0.767 089	0.860 060	0.803 306	0.767 143	0.765 341	0.795 403	0.894 717	0.760 245	0.632 565	0.868 302	0.809 353	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
LM 21925	0.769 707	0.844 611	0.613 760	0.649 476	0.543 020	0.513 048	0.657 892	0.638 415	0.503 259	0.567 145	0.779 684	0.873 488	0.577 800	0.471 381	0.570 182	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
LM 21728	0.623 660	0.700 744	0.607 319	0.493 672	0.411 0029	0.395 507	0.540 351	0.504 151	0.399 359	0.434 975	0.656 214	0.788 978	0.458 772	0.340 551	0.438 011	0.835 806	NA	NA	NA	NA	NA	NA	NA	NA	NA
LM 21790	0.685 386	0.787 391	0.533 577	0.607 144	0.5260 757	0.536 710	0.597 773	0.566 352	0.423 075	0.525 937	0.770 167	0.847 252	0.552 235	0.434 159	0.572 779	0.878 973	0.775 675	NA							

(Table 6	continued)

Progeny	LM2 LM21 1674 661	LM22 478	LM21 761	LM220 99	LM22 001	LM22 527	LM22 534	LM21 884	LM21 864	LM22 130	LM21 709	LM21 706	LM21 787	LM21 839	LM21 925	LM21 728	LM21 790	LM21 881	LM22 575	LM21 852	LM21 886	LM21 867	LM21 874	LM21 836
LM 21881	0.502 0.592 859 096	0.587 421	0.532 551	0.5770 359	0.525 950	0.551 022	0.541 147	0.557 089	0.629 403	0.658 511	0.730 702	0.746 786	0.702 238	0.680 962	0.686 478	0.638 313	0.643 984	NA	NA	NA	NA	NA	NA	NA
LM 22575	0.592 0.691 027 089	0.813 080	0.849 582	0.897 046	0.849 301	0.848 678	0.839 077	0.803 673	0.906 534	0.812 035	0.684 354	0.845 366	0.760 496	0.912 171	0.621 972	0.489 801	0.619 402	0.633 249	NA	NA	NA	NA	NA	NA
LM 21852	0.630 0.723 575 105	0.817 589	0.757 161	0.780 418	0.676 563	0.785 126	0.780 925	0.732 519	0.821 011	0.820 416	0.701 145	0.728 961	0.702 878	0.836 164	0.664 400	0.532 229	0.590 584	0.651 808	0.810 560	NA	NA	NA	NA	NA
LM 21886	0.664 0.756 278 809	0.795 974	0.747 188	0.785 118	0.715 595	0.784 182	0.784 989	0.788 982	0.829 718	0.820 715	0.730 193	0.754 028	0.689 567	0.848 340	0.698 607	0.585 310	0.618 423	0.720 551	0.842 174	0.864 222	NA	NA	NA	NA
LM 21867	0.557 0.701 185 186	0.670 506	0.843 052	0.770 531	0.846 204	0.838 667	0.844 881	0.807 844	0.786 827	0.782 207	0.672 007	0.674 733	0.601 028	0.681 545	0.599 504	0.478 986	0.584 943	0.450 903	0.768 558	0.670 315	0.660 341	NA	NA	NA
LM 21874	0.566 0.659 718 248	0.859 622	0.788 549	0.865 185	0.781 597	0.827 852	0.837 177	0.848 727	0.918 520	0.747 570	0.629 507	0.829 497	0.797 416	0.905 279	0.597 921	0.470 316	0.517 737	0.656 517	0.893 805	0.865 136	0.866 791	0.716 689	NA	NA
LM 21836	0.509 0.590 751 484	0.640 736	0.537 693	0.599 342	0.525 893	0.566 527	0.556 652	0.586 714	0.658 225	0.658 454	0.711 687	0.746 729	0.751 335	0.719 702	0.649 845	0.543 946	0.572 888	0.851 667	0.637 855	0.775 364	0.760 459	0.450 846	0.718 419	NA

NA: non available.

by the used PCA multivariate analysis tool. Obtained clusters of studied progenies could be exploited by oil palm breeders for identification and selection of interesting progeny crosses needed to boost and improve the oil palm breeding program and genetic resource materials, in terms to develop superior hybrid *Tenera* varieties with the introgessed traits of interest that will be distributed to oil palm farmers.

Acknowledgments

The authors greatly acknowledge PT Astra Agro Lestari Tbk, Indonesia and Institute of Agricultural Research for Development (IRAD)-CEREPAH, Cameroon for providing financial and technical support for this research. Bogor Agricultural University (IPB) of Indonesia is acknowledged for the supervision of this study.

References

- Food and Agriculture Organization of the United Nations (FAO). 2012. "FAOSTAT." FAO, Rome. Accessed March 10, 2015. http://faostat.fao.org.
- [2] Bello, D., Sajo, A. A., Chubado, D., and Jellason, J. J. 2006. "Variability and Correlation Studies in Okra (Abelmoschus esculentus (L.) Moench)." J. Sustain. Dev. Agric. Environ. 2 (1): 120-6.
- [3] Okwuagwu, C. O., Okoye, M. N., Okolo, E. C., Ataga, C. D., and Uguru, M. I. 2008. "Genetic Variability of Fresh Fruit Bunch Yield in Deli/Dura × Tenera Breeding Populations of Oil Palm (*Elaeis guineensis* Jacq.) in Nigeria." J. Tropical Agri. 46 (1-2): 52-7.
- [4] Okoye, M. N., Okwuagwu, C. O., and Uguru, M. I. 2009. "Population Improvement for Fresh Fruit Bunch Yield and Yield Components in Oil Palm (*Elaeis guineensis* Jacq.)." *American-Eurasian J. Sci. Res.* 4 (2): 59-63.
- [5] Okwuagwu, C. O., and Tai, G. C. C. 1995. "Estimate of Variance Components and Heritability of Bunch Yield and Yield Components in the Oil Palm (*Elaeis guineensis* Jacq.)." *Plant Breeding* 114 (5): 463-5.
- [6] Rafii, M. Y., Rajanaidu, N., Jalani, B. S., and Kushairi, A. 2002. "Performance and Heritability Estimations on Oil Palm Progenies Tested in Different Environments." *J. Oil Palm Res.* 14 (1): 15-24.
- [7] Musa, B. B., Saleh, G. B., and Loong, S. G. 2004. "Genetic Variability and Broad-Sense Heritability in Two

Deli-Avros D × P Breeding Populations of the Oil Palm (*Elaeis guineensis* Jacq.)." *SABRAO J. Breed. Genet.* 36 (1): 13-22.

- [8] Noh, A., Rafi, M. Y., Mohd Din, A., Kushairi, A., Norziha, A., Rajanaidu, N., Latif, M. A., and Malek, M. A. 2014. "Variability and Performance Evaluation of Introgressed Nigerian *Dura* × Deli *Dura* Oil Palm Progenies." *Genet. Mol. Res.* 13 (2): 2426-37.
- [9] Ghafoor, A., Sharif, A., Ahmad, Z., Zahid, M. A., and Rabbani, M. A. 2001. "Genetic Diversity in Blackgram (*Vigna mungo* (L.) Hepper)." *Field Crops Res.* 69 (2): 183-90.
- [10] Mandal, P. K., and Kochu, B. M. 2008. "Bunch Analysis of Oil Palm." Technical Bulletin No. 8, National Research Centre for Oil Palm, Malaysia.
- [11] Breure, C. J., and Powell, M. S. 1987. "The One-Shot Method of Establishing Growth Parameters in Oil Palm." In Proceedings of the Palm Oil Research Institute of Malaysia (PORIM) International Oil Palm Conference, 203-9.
- [12] Singh, R. K., and Chaudhary, B. D. 1979. Biometrical Methods in Quantitative Genetic Analysis. New Delhi, India: Kelyani Publisher, 303.
- [13] Kushairi, A., Rajanaidu, N., Jalani, B. S., and Zakri, A. H.
 1999. "Agronomic Performance and Genetic Variability of *Dura × Pisifera* Progenies." *J. Oil Palm Res.* 11 (2): 1-24.
- [14] Talebi, R., Fayaz, F., Mardi, M., Pirsyedi, S. M., and Naji, A. M. 2008. "Genetic Relationships among Chickpea (*Cicer arietinum*) Elite Lines Based on RAPD and Agronomic Markers." *Int. J. Agric. Biol.* 10: 301-5.
- [15] Malik, S. R., Shabbir, G., Zubir, M., Iqbal, S. M., and Ali,
 A. 2014. "Genetic Diversity Analysis of Morphogenetic Traits in Desi Chickpea (*Cicer arietinum*)." *Int. J. Agri. Biol.* 16 (5): 956-60.
- [16] Hamayoon, R., Khan, H., Shah, S., Naz, L., Munir, I., Arif, M., Khalil, I. A., and Khan, A. Z. 2011. "Performance of Chickpea Genotypes under Two Different Environmental Conditions." *African J. Biotech.* 10 (9): 1534-44.
- [17] Shiv, S., Iquebal, M. A., Singh, N. P., Solanki, R. K., and Sarika. 2012. "Genetic Diversity Studies in Chickpea (*Cicer arietinum* L.) Germplasm." *J. Food Legumes* 25 (1): 31-6.
- [18] Ekezie, D. D. 2013. "Principal Component Analysis, an Aid to Interpretation of Data: A Case Study of Oil Palm (*Elaeis guineensis* Jacq.)." J. Emerg. Trends Eng. Appl. Sci. 4 (2): 237-41.
- [19] Montoya, C., Cochard, B., Flori, A., Cros, D., Lopes, R., Cuellar, T., Espeout, S., Syaputra, I., Villeneuve, P., Pina, M., Ritter, E., Leroy, T., and Billotte, N. 2014. "Genetic Architecture of Palm Oil Fatty Acid Composition in

Genetic Diversity and Interrelationship among Some *Dura* × *Tenera* Oil Palm (*Elaeis guineensis* Jacq.) Genotypes in Cameroon

Cultivated Oil Palm (*Elaeis guineensis* Jacq.) Compared to Its Wild Relative *E. oleifera* (H.B.K.) Cortés." *PLoS One* 9 (5): e95412.

[20] Zhou, L. X., Xiao, Y., Xia, W., and Yang, Y. D. 2015. "Analysis of Genetic Diversity and Population Structure of Oil Palm (*Elaeis guineensis*) from China and Malaysia Based on Species-Specific Simple Sequence Repeat Markers." Genet. Mol. Res. 14 (4): 16247-54.

[21] Camillo, J., Braga, V. C., De Abreu Mattos, J. K., Lopes, R., Vieira da Cunha, R. N., Padilha, J., and Scherwinski-Pereira, J. E. 2014. "Seed Biometric Parameters in Oil Palm Accessions from a Brazilian Germplasm Bank." *Pesquisa Agropecuária Brasileira* 49 (8): 604-12.