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Design Principle Analysis 

Bendjaima Belkacem 

M’sila, Algérie 

 
Abstract: In the present work and on the basis of a previous study, we expect to determine optimum methods of gas turbine design. 

We will look for a design of more efficient machines using the principle of scale factor. It is a question of modifying of machines 
dimensions that we are going to look for. 
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1. Basic Equation, Equation Resolution: [1] 

From the meridien flow equation of the axial turbo 

machinery with single stage and if it is supposed that 

the forces of blading are negligible, the general 

equation in co-ordinates( z , r ,  ) is written for 

multistage machines as Eq. (1) [2]: 
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 is stream function; this is by holding account 

that the radial component of the force of blading is 

negligible, in particular in the following cases:  

(1) The blades are radial,  

(2) The flow is in free vortex,  

(3) We are outside the blade zone. 

It is the Laplace equation in cylindrical co-ordinates 

which governs flows in free vortex, in which many 

works treat its resolution. We try on this study to 

proceed to a new resolution. 

By considering the boundary conditions of Dirichlet 

and Neumann, the expression of the steam function is 

written for nominal rate flow Q, which crosses the 

machine, in Eq. (2) [1]: 
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In Eq. (3), 1R  and 2R are the hub and the casing 

radius of last stage of the machine. 

If we note Eq. (4): 
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Then the stream function does not depend on 1R

and depend on flow rate Q (of the flow velocity), then 

Eq. (5): 
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And Eq. (6): 

r 2
12 2

z
Q

R



            

(6) 

2. Stream Function 

Stream function: (r=f(z)) is Eq. (7):  

0  zHz rkr
       

(7) 
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For gas turbine with two stages and if 
2.2R is the 

casing radius of second stage and
1.1R  of the first 

stage, we pose: 
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Let us suppose that the line which passes through 

the two points of the axis has the length H’. 

Flow is on free Vortex: 
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If we take the axis that passes through the center of 

gravity (Fig. 1), the slope of this line is: 
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For all machines designed by scale factor, and by 
multiplying dimensions with the coefficient  we 

have: 
Ctea   
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If: 
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Then: 
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If: 
2  

We have Eq. (10): 
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Casing radius do not depend on  , it depends on 

1.1R . 

3. Dimensions Optimization 

3.1 Rate Flow Optimization 

Rate flow expression is: 
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With 1r  the inferior radius(hub radius). 

Maximal rate flow is for: 

Hz   

And: 

11 Rr   

Then Eq. (11): 
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With 2.1R
 

the radius of hub for the first stage of 
rotor and: 

)( 2
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Then Eq. (12): 
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(12) 

If we design a machine from an initial turbine and if 

we use the scale factor principle and with: 

2  

This factor is constant for all machines designed.  

3.2 Scale Factor 

The value of axial velocity zV in the meridian 

stream plane is: [1] 
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Eq. (13) is negative because the large radius to the 

small direct sense of the velocity; the maximal value 

of the axial velocity is for 1Rr  . 

For expression of the maximum of volume flow 

rate, we take the absolute value of axial velocity as Eq. 

(14): 
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With: 
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And: maxzV : Maximal axial velocity. 

S : Section of exhaust turbine. 

Q : Total volume flow rate (nominal). 

When we multiply the hub and the casing radius by 

the coefficient   such as 2
1

2
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value of the flow rate is proportional to the square of 

 , and the maximum variation of the flow rate 

according to the nominal flow rate is thus linear. The 

slope is the ratio of the square of casing to hub radius. 

The maximum of flow rate corresponds to a nominal 

of the new machine [1]. 

We have machines dimensions with: 

QQ 4max   

A geometric progression of expression n4 of 

reason, the relative number 4 will be the subject 

of a multitude of machines, among which we can 

choose which is appropriate for our need. 

We choose two factors: 

 For 1n , we have 2  

 For 1n , we have 5.0  

We have the same manner [01] by multiplying the 
dimensions with the factor 2 , the rate flow will 

be: 

QQ 4  

We can design machines with less dimensions, but 

better performances when we choose the conditions: 
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And length H: 

teConsH tan  

The stream function is then preserved: 

 .r . ; rr .   
When we use scale factor principle [1], we can say 

that by varying all dimensions by   time, we obtain 

stream function proportional to the square of the factor 

 . The stream function is then preserved [1]: 

 .r . ; rr .   
With: 
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And: 
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The radius r  is proportional to .1
2z  and the 

factor of proportionality is the same that of the initial 

machine.  

With identification, we obtain Eq. (15): 

         airait QQ ..  
         

(15)   

And Eq. (16): 

gg QQ ..  
          

(16) 

With airQ .  
and gQ .  

respectively the air flow 

rate and the flow rate of natural gas of the new 
machine, airQ

 
and gQ

 
are for the initial machine. 

We will proceed of the same manner to design the 

axial compressor of the new machine by multiplying 

its radius by the same factor  . 

We can determine machine designs by combining 

the data in Table 1. 

4. Design Cases 

(1) We can do calculation for a new machine using 

our principle such as: QQ .4max   and multiplying 

the dimensions of the machine designed by the 
coefficient 5.0 ( 25.0 ). We have designed 

another machine of the same rate QQ   as that of 

the initial machine but with smaller dimensions. 

(2) With the same manner instead of using the scale 

factor 2  ( 4 ) [02], which satisfies:
QQ .41.  , we use our concept, and some will have 

smaller dimensions. 
 

Table 1  Coefficient and scale factors. 

Scale factor   Coefficient   Our machine rate flow  
Rate flow [2] 

QQ .1.    

0.5 25.0  QQ   QQ 25.01. 
 

1 1  QQ .4max   QQ 
 

2 4  QQ .16
 QQ .41. 
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Stage 1                     Stage 2 

Fig. 1  Gas turbine rotor longitudinal section (two stages 
machine).  

5. Performances: [1] 

The specific consumption   of initial machine is 

Eq. (17): 
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P
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(17) 

PCI is the lower calorific value of natural gas,   

is the density of the natural gas. 

The power delivered by an alternator driven by the 

machine according to the scale factor concept is the 

product of the power corresponding to the initial 

machine and square of the scale factor. [3] 

The variation in power is Eq. (18): 
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That in   is Eq. (19): 
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6. Numerical Calculation 

6.1 Numerical Calculation of Axial Velocity: [1] 

In technique of the finished differences, we divided 

the flow field in a system of the point’s grid; we take 

the differences between the values of the grid to 

adjacent grid of points. The punctual coordinates of 

the flow are: 
rir  . and zjz  . ; ( 1 ii RRr and

1 jj zzz ). 
r  And z are the dimensions of the grid 

element, I and j are the associated index to the points 

gird. The value of the variable  zr, can be 

represented by ji, , the value of in the grid ),( ji . 

By Eq. (1) and after the estimate of the first and 

second derivate of  , we obtain Eq. (20) by taking
rz  : 
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For 1,,2  mki and 1,,2  nkj  

We pose:
2
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The error on the stream function ji ,
corresponds to the residues given by Eq. (21): 
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For: 1,,2  mki  And 1,,2  nkj  

The approximate value of maximum axial velocity 

according to the stream function is Eq. (22): 
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The errors on axial velocity can be obtained by Eq. 

(23): 

)(
1

,1,1 jijiz rr
V  


 

      
(23) 

where ji ,
 

is given by the expression Eq. (20). 

To estimate the errors on axial velocity, we use Eq. 

(24):  
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6.2 Limits Conditions: [1] 

Dirichlet conditions: 

On (1) Hub: 1Rr , 1i    
2

, 1
Q

rz 
,
 

On (2) Casing: 2Rr , mi    0, 2 rz , 

Neumann conditions: 

On (3) In the upstream: 0z , 1j  0



z


 

On (4) In the downstream: Hz , nj  0



z

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6.3 Equation Resolution: [4] 

To resolve the equation of finished difference (20), 

the iterative method is used. Let us suppose the 

rectangular sector on the plan represented by Fig. 2, 

on which the flow is divided into grid of 16 points. 
The values of  are known on 12 points to the 

borders of grid, and the values inside the grid 

indicated in black are unknown. For these internal 

points we use Eq. (25): 
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On the previous equations, the known values are 

indicated by the indication B. The Eq. (25) represents 

a system of equation to 4 unknowns and it is soluble. 

They represent four equations with four unknowns. 

One of resolution techniques is the iteration method. 

6.4 Scale Factor Calculation, Performances Gains 

Coefficient value  cf. (3.2) can be calculated by 

Eq. (26):  

 SVQQ za .maxmax
Q1.        (26) 

With the new section which verifies Eq. (27): 
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With: 
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The first coefficient 2
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corresponds to flow rate of a new machine and

Q  of the initial machine. 

max.zV is given by Eq. (22). 

 
Fig. 2  Point’s grid on rectangular region. 
 

We can easily calculate the value of   (of  ) 

using the value of rate flow 1Q , the specific 

consumption gain is like Eq. (28): 

2

1
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(28) 

For Power Eq. (29): 


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1P
             

(29) 

7. Conclusions 

The use of the scale factor notion and a result of the 

calculations carried out on our present study allow us 

to determine optimum design methods for gas 

turbines. From this study, we will have gain on 

dimensions and performances. We hope that our 

modest work will be the subject of scientific research 

in the future. 
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Appendix 

Table N02 

Performances Gains 

Data: 

 Scale factor 2  

 Coefficient 4  

 Gain in specific consumption 

%75.93
1

1
2



  

 Gain in power %7575.0
1

1 


 P  

Essays Data: 

 Initial machine specific consumption: 

kwhkcal /9.3362  

 Initial machine Electrical power:  

KwP 1.19751  

Gains: 

 New machine power: KwP 8.246681   

 New machine specific consumption: 

72.3152).(1   KwhKcal /  

 Gain in specific consumption: 

KwhKcal /18,210  

 Difference in natural gas rate flow: 

thPPxQg .805.1037))( 1    

 Gain in power: KwP 7.4937  

  

 


