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Abstract: The acceleration mechanism of astrophysical jet and the collimation mechanism narrowing down to a long distance have 
been examined so far. It is a collimation problem of how to narrow the astrophysical jet narrowly. Further, the model of the 
astrophysical jet acceleration mechanism is required to solve this collimation problem at the same time as well as its acceleration. At 
the present time, the magnetic force model (magnetic centrifugal force and magnetic pressure) is regarded as the most dominant 
theory which solves the two problems of astrophysical jet acceleration and collimation at the same time. In addition to the present 
astrophysical jet narrow collimation mechanism by magnetic tension (pinch) force, in this article, another collimation mechanism 
which narrows down an astrophysical jet is newly introduced. That is, since a curvature is generated in the space around the 
astrophysical jet by magnetic field, a kind of pressure equivalent to the gravitational effect is generated in the direction of the interior 
of astrophysical jet as well as the pinch force from the outer circumferential surface of the astrophysical jet. 
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1. Introduction 

The astrophysical jet is a narrow jetted plasma jet at 

high speed (100 km/s to near the speed of light) that 

emits in both directions vertically from accretion disk 

around the compact central object such as a neutron 

star or black hole. Its length is an enormous, long and 

narrow jet reaching from 1 light year—10 light 

years—1 million light years. A jet propagating at a 

speed close to the speed of light is called a relativistic 

jet. 

The acceleration mechanism of the astrophysical  

jet and the collimation mechanism narrowing down  

to a long distance have been examined so far. They 

are due to thermal gas pressure, light radiation 

pressure, and magnetic field pressure. Currently, 

Radiative Acceleration model accelerated by the 

radiation field of the accretion disk and Magnetic 

Acceleration model accelerated by magnetic field 
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penetrating the accretion disk are representative 

models. The high velocity, highly collimated gas 

streams—jets—raise two major problems, namely 

how the jet material is accelerated, and how it is 

collimated (Fig. 1a). 

It is a collimation problem of how to narrow the jet 

narrowly, and the model of the jet acceleration 

mechanism is required to solve this collimation 

problem at the same time as well as acceleration. At 

the present time, the magnetic force model (magnetic 

centrifugal force and magnetic pressure) is regarded as 

the most dominant theory which solves the two 

problems of jet acceleration and collimation at the 

same time. That is, the accretion disk generates a 

helical magnetic field by twisting the magnetic field 

lines, accelerates by magnetic force, and narrows the 

jet by magnetic tension (pinch). The self-pinching 

force of magnetic field twisted by the rotation occurs 

naturally as a force to collimate the jet thinly (Fig. 1b) 

[1-8]. 

However,  there  are  also  controversies  among 

researchers as follows: 1) the global magnetic field 

cannot be MHD (magnetohydrodynamic) jet due to 
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(a)                                                  (b) 

Fig. 1  (a) Astrophysical Jet from an Accretion Disk of Black Hole; (b) Formation of Astrophysical Jet wound by twisting 
magnetic field lines. 
(http://image.search.yahoo.co.jp/sear ch?rkf=2&ei=UTF-8&gdr=1&p=Astrophysical+Jet) 
 

weak magnetic field; 2) even if the global magnetic 

field is weak, it can do MHD jet, and the local 

magnetic field can do MHD jet, furthermore the 

astrophysical jet can collimate by magnetic field; 3) 

the magnetic field hypothesis is difficult because the 

magnetic field in the jet is weak. 

Even so, if the magnetic field lines are in the jet, 

there is a possibility that a strong magnetic field 

region is locally generated due to local turbulence and 

shock waves in the plasma. 

In addition to the conventional jet narrow 

collimation mechanism by magnetic tension (pinch) 

force, in this article, we introduce another collimation 

mechanism which narrows down a jet. 

That is, since a magnetic field is present in the jet, a 

curvature is generated in the surrounding space by 

magnetic field; a spatial pressure equivalent to the 

gravitational effect in the surrounding space is 

generated in the direction of the interior of the jet 

[9-11]. This spatial pressure acts as well as the pinch 

force from the outer circumferential surface of the 

astrophysical jet, i.e., collimation mechanism. 

2. Astrophysical Jet Acceleration and 
Collimation 

An astrophysical jet is a phenomenon often seen in 

astronomy, where streams of matter are emitted along 

the axis of rotation of a compact central object (such 

as a black hole or neutron star). Many stellar objects 

with accretion disks have jets. While it is still the 

subject of ongoing research to understand how jets are 

formed and powered, the two most often proposed 

origins are dynamic interactions within the accretion 

disk, or a process associated with the compact central 

object. When matter is emitted at speeds approaching 

the speed of light, these jets are called relativistic jets. 

While it is not known exactly how accretion disks 

would accelerate jets or produce positron-electron 

plasma, they are generally thought to generate tangled 

magnetic fields that cause the jets to accelerate and 

collimate. 

One of the astonishing properties of astrophysical 

jets is that they remain collimated over quite large 

distances. Again, MHD processes seem to be most 
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likely responsible for this behavior: the same pinch 

mechanism, which forced the plasma gas into a beam 

directed along the polar axis of the driving source, is 

also collimating the astrophysical jet further out. The 

idea of magnetic collimation of jets in the asymptotic 

regime (i.e., far from the driving sources) has been 

proposed first for galactic radio jets showed that any 

axisymmetric (nonrelativistic) magnetized wind will 

approach a cylindrically collimated structure, if the 

electric current carried by the flow is non-zero. The 

collimation mechanism is straightforward to 

understand for a current carrying flow: the current 

creates a magnetic field wrapping around the current 

via Ampère’s law. The action of this (toroidal) field 

then pinches the current back to the flow axis via the 

Lorentz force. In the case of a vanishing current, the 

flow would still be paraboloidally collimated. The 

importance of magnetic fields for jet collimation is 

valid. 

Since the one-fluid approximation holds, the 

equation of motion of the magnetic fluid is given by 

0
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where F is the Lorentz force, J is the current density, 

B is the magnetic field, . 

We use the following equation (Ampère’s rule) 

JB 0 . 

The first term in Eq. (1) denotes magnetic tension 

and second term denotes magnetic pressure. 

Fig. 2a shows cylindrical plasma. A current I flows 

in the plasma and a magnetic field Bθ occurs in the θ 

direction. Although the force of contracting the 

plasma by Bθ is Lorentz force, magnetic pressure PB is 

externally applied and the cylindrical plasma is 

contracted (Fig. 2b). 

Using Eqs. (2) and (3), 

IJdSBdsrotBdS
C SS 00       (2) 
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magnetic field Bθ is obtained:  

r
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Then, magnetic pressure is obtained: 

0

2

2
B

PB                 (5) 

Fig.  3a shows   General   Relativistic  MHD 

simulation on the interaction between ergosphere and 

magnetic field line of rotating black hole. A black hole 

dynamics has its plasma aligned to the interstellar 

magnetic field lines that thread through the equatorial 

plane of the accretion disk just outside the event 

horizon, so that the plasma evolves into accretion disk,  
 

 
Fig. 2  (a) cylindrical plasma; (b) Contracted cylindrical plasma by magnetic pressure. 
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(a)                                                 (b) 

Fig. 3  (a) MHD jets from Kerr hole magnetosphere (Koide et al. 2002 Science); (b) KatoY, Mineshige, Shibata (2004); 3D 
sim. (ApJ). This toroidal field dominated jet is launched by magnetic pressure (similar to Shibata and Uchida 1985, Turner et 
al. 1999, Kudoh et al. 2002), and is also Similar to “magnetic tower” of Lynden-Bell (1996). 
 

which could be described as a condensate of 

electron-positron pairs. Since the plasma being highly 

conductive, it will be expected that the interstellar 

magnetic field lines will become frozen into that 

plasma which rotates within accretion disk, and as the 

accretion disk rotates it will drag and twist those 

magnetic field lines, pulling them together. 

Fig. 3b shows a toroidal field dominated jet is 

launched by magnetic pressure. 

As the magnetic field penetrating the accretion disk 

is twisted, the energy of the magnetic field is 

accumulated, and at the same time it propagates along 

the magnetic field lines, the jet ejects from the 

accretion disk, and not only the magnetic centrifugal 

force but also magnetic pressure also contributes to 

acceleration of jet. 

When the magnetic field is twisted in the direction 

of rotation by the actuation rotation of the plasma 

material, the twisted magnetic field acts like a spring 

to accelerate the plasma material further upward. 

In other words, it is acceleration by magnetic 

pressure. If the jet is magnetically accelerated, the jet 

is expected to have a twisted helical magnetic field 

(Fig. 1b). 

Furthermore, the twisted magnetic field acts like a 

rubber string, and the force of the rubber band shrinks 

(magnetic pinch) so that the flow of the plasma 

substance is directed in the rotation axis direction. 

This is the collimation of the jet by magnetic field. 

Collimation also occurs voluntarily in addition to 

acceleration in a model where a jet is driven from an 

accretion disk by magnetic field and rotation. 

Even if the magnetic field penetrating the accretion 

disk is very weak, the rotation of the accretion disk 

causes the magnetic field to twist and increase more 

and more, and the energy is stored in the magnetic 
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field to the same extent as the rotational energy of the 

accretion disk. Even in the case of a local magnetic 

field in the disk instead of the global magnetic field, 

the magnetic field is twisted in the disk, so that 

magnetic pressure is generated and it is possible to 

accelerate the jet [4-7]. 

The energy of the magnetic field is increased by 

compressing the gas or stretching the magnetic field 

lines due to the plasma gas. The phenomenon in 

which energy stored in the form of a magnetic field is 

released locally and in large quantities in a short time 

is well known for solar flares. The acceleration 

mechanism for these jets may be similar to the 

magnetic reconnection processes observed in the 

Earth’s magnetosphere and the solar wind. The energy 

of magnetic field is given by: 

3
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

           (6) 

where R is the radius of sunspot. 

As magnetic rotation instability grows, magnetic 

field lines are stretched in the azimuth direction, the 

magnetic field is strengthened, and the magnetic 

energy exponentially increases. 

As long as there is a weak magnetic field at the 

beginning, the magnetic field is amplified by magnetic 

rotation instability. 

3. Collimation Mechanism of Astrophysical 
Jet Induced by Spatial Curvature Generated 
in Space around Magnetic Field 

3.1 Introduction 

The principle of this idea is derived from General 

Relativity and the theory of continuum mechanics. We 

assume that the so-called “vacuum” of space acts as 

an infinite elastic body like rubber. The curvature of 

space plays a significant role. A hypothesis for 

mechanical property of space-time is introduced by 

Minami in 1988 [11]. Concerning the basic concept, 

please refer to Appendix A: Continuum Mechanics of 

Space-Time. 

Furthermore, the major component of curvature of 

space can be produced by not only mass density but 

also magnetic field. 

In the subsequent sections, Generation of Surface 

Force Induced by Spatial Curvature in the first, 

Curvature Control by Magnetic Field in the second, 

and finally, Collimation Mechanism Induced by Spatial 

Curvature around Magnetic Field are introduced. 

3.2 Generation of Surface Force Induced by Spatial 

Curvature 

On the supposition that space is an infinite continuum, 

continuum mechanics can be applied to the so-called 

“vacuum” of space. This means that space can be 

considered as a kind of transparent field with elastic 

properties. Fig. 4 shows the curvature of space. 

If space curves, then an inward normal stress “–P” 

is generated (Fig. 4a). This normal stress, i.e. surface 

force serves as a sort of pressure field. 

)/1/1()2( 21
2/100 RRNRNP    (7) 

where N is the line stress, 1R , 2R  are the radius of 

principal curvature of curved surface, and 00R  is the 

major component of spatial curvature. 

A large number of curved thin layers form the 

unidirectional surface force, i.e. acceleration field. 

Accordingly, the spatial curvature 00R  produces the 

acceleration field  (Fig. 4b). 

The fundamental three-dimensional space structure 

is determined by quadratic surface structure. Therefore, 

a Gaussian curvature K in two-dimensional Riemann 

space is significant. The relationship between K and the 

major component of spatial curvature 00R  is given by: 

00
2

122211

1212

2

1

)(
R

ggg

R
K 


       (8) 

where 1212R  is non-zero component of Riemann 

curvature tensor. 

It is now understood that the membrane force on the 

curved surface and each principal curvature generates 

the normal stress “–P” with its direction normal to the 
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curved surface as a surface force. The normal stress 

“–P” acts towards the inside of the surface as shown 

in Fig. 4a. 

A thin-layer of curved surface will take into 

consideration within a spherical space having a radius 

of R and the principal radii of curvature that are equal 

to the radius (R1 = R2 = R). Since the membrane force 

N (serving as the line stress) can be assumed to have a 

constant value, Eq. (7) indicates that the curvature
00R  generates the inward normal stress “–P” of the 

curved surface. The inwardly directed normal stress 

serves as a pressure field. 

When the curved surfaces are included in a great 

number, some type of unidirectional pressure field is 

formed. A region of curved space is made of a large 

number of curved surfaces and they form the field as a 

unidirectional surface force (i.e. normal stress). Since 

the field of the surface force is the field of a kind of 

force, the force accelerates matter in the field, i.e. we 

can regard the field of the surface force as the 

acceleration field. A large number of curved thin 

layers form the unidirectional acceleration field (Fig. 

4b). Accordingly, the spatial curvature 00R produces 
the acceleration field  . Therefore, the curvature of 

space plays a significant role to generate pressure field. 

Applying membrane theory, the following equilibrium 

conditions are obtained in quadratic surface, 

0 PbN 
             (9) 

where N  is a membrane force, i.e. line stress of 

curved space, b  is second fundamental metric of 

curved surface, and P is the normal stress on curved 

surface [9-11, 13-16]. 

The second fundamental metric of curved space 

b  and principal curvature )(iK  has the following 

relationship using the metric tensor g , 

 gKb i )(             (10) 

Therefore we get: 
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 

 
 

 

  
     (11) 

From Eqs. (9) and (11), we get: 

PKN i )(


            (12) 

As for the quadratic surface, the indices   and i 

take two different values, i.e. 1 and 2, therefore Eq. 

(12) becomes: 

PKNKN  )2(
2

2)1(
1

1        (13) 

where )1(K  and )2(K  are principal curvature of 

curved surface and are inverse number of radius of 

principal curvature (i.e. 1/R1 and 1/R2). 

The Gaussian curvature K is represented as: 

)/1()/1( 21)2()1( RRKKK     (14) 

Accordingly, suppose NNN  2
2

1
1 , we get: 

PRRN  )/1/1( 21        (15) 

It is now understood that the membrane force on the 

curved surface and each principal curvature generate 

the normal stress “–P” with its direction normal to the 
 

 
(a)                                                   (b) 

Fig. 4  Curvature of Space: (a) curvature of space plays a significant role. If space curves, then inward stress (surface force) 

“P” is generated   A sort of pressure field; (b) a large number of curved thin layers form the unidirectional surface force, 

i.e. acceleration field  . 
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curved surface as a surface force. The normal stress 

“–P” is towards the inside of surface as shown in   

Fig. 4. 

A thin-layer of curved surface will be taken into 

consideration within a spherical space having a radius 

of R and the principal radii of curvature which are 

equal to the radius (R1 = R2 = R). From Eqs. (8) and 

(14), we then get: 

2

111 00

2
21

R

RRR
K         (16) 

Considering PRN  )/2(  of Eq. (15), and 

substituting Eq. (16) into Eq. (15), the following 

equation is obtained: 

002RNP            (17) 

Since the membrane force N (serving as the line 

stress) can be assumed to have a constant value, Eq. 

(17) indicates that the curvature 00R  generates the 
inward normal stress “–P” of the curved surface. The 

inwardly directed normal stress serves as a kind of 

pressure field. 

Here, we give an account of curvature 00R  in 

advance. The solution of metric tensor g  is found 

by gravitational field equation as the following: 

 
T

c

G
RgR  4

8

2

1
   (18) 

where R  is the Ricci tensor, R is the scalar 

curvature, G is the gravitational constant, c is the 

velocity of light, T  is the energy momentum 

tensor. 

Furthermore, we have the following relation for 

scalar curvature R : 

, ,
j ij

j i j

R R g R R g g R
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Ricci tensor R  is represented by: 
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where jk
i  is Riemannian connection coefficient. 

If the curvature of space is very small, the term of 

higher order than the second can be neglected, and 

Ricci tensor becomes: 





 ,, R           (21) 

The major curvature of Ricci tensor ( 0  ) is 

calculated as follows: 

000000
000000 11 RRRggR      (22) 

As previously mentioned, Riemannian geometry is 

a geometry that deals with a curved Riemann space, 

therefore Riemann curvature tensor is the principal 

quantity. All components of Riemann curvature tensor 

are zero for flat space and non-zero for curved space. 

If an only non-zero component of Riemann curvature 

tensor exists, the space is not flat space but curved 

space. Although Ricci tensor R  has 10 independent 

components, the major component is the case of

0  , i.e., . Therefore, the major 

curvature of Ricci tensor 00R  plays a significant role. 

3.3 Curvature Control by Magnetic Field 

Let us consider the electromagnetic energy tensor

. In this case, the solution of metric tensor  

is found by 

     (23) 

Eq. (23) determines the structure of space due to the 

electromagnetic energy. 

Here, if we multiply both sides of Eq. (23) by , 

we obtain 
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The following equation is derived from Eqs. (24) 

and (25) 

           (26) 

Substituting Eq. (26) into Eq.(23), we obtain 

 

       (27) 

Using antisymmetric tensor  which denotes the 

magnitude of electromagnetic field, the 

electromagnetic energy tensor  is represented as 

follows; 

 

          (28) 

Therefore, for M, we have 

 

 

 

    (29) 

Accordingly, substituting  into Eq. (27), 

we get 

         (30) 

Although Ricci tensor  has 10 independent 
components, the major component is the case of 

, i.e., . Therefore, Eq. (30) becomes 

        (31) 

On the other hand, 6 components of antisymmetric 

tensor  are given by electric field E and 

magnetic field B from the relation to Maxwell’s field 

equations 

 

 

 

 

       (32) 

Substituting Eq. (32) into Eq. (28), we have 

. 

 (33) 

Finally, from Eqs. (31) and (33), we have 

, 

  (34) 

where we let , 

, )/(103 8 smc  , 

,  is a magnetic 

field in Tesla and  is a major component of 

spatial curvature . 

The relationship between curvature and magnetic 

field was derived by Minami and introduced it in 16th 

International Symposium on Space Technology and 

Science (1988) [11]. Eq. (34) is derived from general 

method using gravitational field equation. 

On the other hand, Levi-Civita also investigated the 

gravitational field produced by a homogeneous 

electric or magnetic field, which was expressed by 

Pauli [12]. If  is taken in the direction of a 
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magnetic field of intensity F (Gauss unit), the square 

of the line element is of the form; 
 

 

  (35) 

where r= , c1 and c2 are constants, 

,  is Newtonian gravitational 

constant (G), and x1…x4 are Cartesian coordinates 

(x1…x3=space, x4=ct) with orthographic projection. 

The space is cylindrically symmetric about the 

direction of the field, and on each plane perpendicular 

to the field direction the same geometry holds as in 

Euclidean space on a sphere of radius a, that is, the 

radius of curvature a is given by 

             (36) 

Since the relation of between magnetic field B in SI 

units and magnetic field F in CGS Gauss units are 

described as follows: , then the radius 

of curvature “a” in Eq. (36) is expressed in SI units as 
the following (changing symbol, ): 

 

       (37) 

While, scalar curvature is represented by 

 (38) 

which coincides with Eq. (34). 

3.4 Collimation Mechanism Induced by Spatial 

Curvature around Magnetic Field 

As mentioned above, the collimation mechanism is 

summarized as follows. 

(1) On the supposition that space is an infinite 

continuum, continuum mechanics can be applied to 

the so-called “vacuum” of space. This means that 

space can be considered as a kind of transparent 

elastic field. That is, space as a vacuum performs the 

motion of deformation such as expansion, contraction, 

elongation, torsion and bending. We can regard space 

as an infinite elastic body like rubber. 

(2) From General Relativity, the major component 

of curvature of space 00R  can be produced by not 
only mass density but also the magnetic field B as 

follows (See 3.3 Curvature Control by Magnetic 

Field): 
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Eq. (39) indicates that the major component of 

spatial curvature can be controlled by magnetic field 

B. 

(3) If space curves, then an inward normal stress 

“–P” is generated (See 3.2 Generation of Surface 

Force Induced by Spatial Curvature). 

This normal stress, i.e. surface force serves as a sort 

of a pressure field. 
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where N is the line stress of membrane of curved 

surface, R1, R2 are the radii of principal curvature of 

curved surface. 

A large number of curved thin layers form the 

unidirectional surface force, i.e. acceleration field. 

Accordingly, the spatial curvature 00R  produces the 
acceleration field  . 

(4) From the following linear approximation 

scheme for the gravitational field equation (See 
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Appendix B: Acceleration Induced by Spatial 

Curvature): 

(i) weak gravitational field, i.e. small curvature 

limit, (ii) quasi-static, (iii) slow-motion approximation 

(i.e. v/c<<1), 

we get the following relation between acceleration 

of curved space and curvature of space: 

 i i i

a

b
g c R x dx  00

2 00 ( )      (41) 

Eq. (41) indicates that the acceleration field i  is 

produced in curved space. 

(5) In the curved space region, the massive body “m 

(kg)” existing in the acceleration field is subjected to 

the following force Fi (N): 

Setting i = 3 (i.e. direction of radius of curvature: r), 

we get: 
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From Eqs. (39), (40) and (42), we obtain the 

following equations: 
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Eq. (43) indicates the spatial pressure induced by 

magnetic field. Eq. (44) indicates the acceleration 

acting on the surface of astrophysical jet. It may be 

easy to understand by using the spatial pressure as 

compared with the acceleration. 

Next, we describe the pressure of the cylindrical 

space from the shape of the astrophysical jet. 

Fig. 5 shows the spatial pressure or acceleration 

induced by magnetic field acting on the surface of 

astrophysical jet. 

Fig. 6 shows the spatial pressure as an inward 

normal stress “–P” about spherical curved space and 

cylindrical curved space. 

As shown in Fig. 6b, the principal radii of curvature 

1R  and aR 2  yield the following: 
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From Eq. (37), 
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Then we get 
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Accordingly, spatial pressure (normal stress) from 

the concentric spatial surface surrounding the jet 

collimates the jet. 

However, since the shape and intensity of the 

magnetic field change depending on the turbulence of 

the plasma and the condition of the shock wave inside 

the astrophysical jet, it may be possible to apply a 
 

 
(a)                                          (b) 

Fig. 5  (a) Spatial pressure from the concentrically curved multilayer space to the vicinity surface of the cylinder jet; (b) 
Extended figure of (a). 
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Fig. 6  (a) Spherical curved space. If space curves, then inward stress (surface force) “P” is generated   A sort of 

pressure field; (b) Cylindrical curved space for Astrophysical Jet. 
 

spherical curved space (Fig. 6a) rather than cylindrical 

curved space (Fig. 6b). 

Since the present space is rigid, the line stress of 

space “N” seems to be expected as large value. 

4. Conclusion 

Magnetic force model (magnetic centrifugal force 

and magnetic pressure) is regarded as the most 

dominant theory which solves the two problems of 

astrophysical jet acceleration and collimation at the 

same time. That is, the accretion disk generates a 

helical magnetic field by twisting the magnetic field 

lines, accelerates by magnetic force, and narrows the 

jet by magnetic tension (pinch). 

On the other hand, since the magnetic field is 

present in the astrophysical jet, a spatial curvature is 

generated induced by magnetic field in the 

surrounding space; a spatial pressure in space 

equivalent to the gravitational effect is generated in 

the direction of the interior of the astrophysical jet as 

well as the pinch force from the outer circumferential 

surface of the astrophysical jet. 

Accordingly, although its effect may be small than 

magnetic pressure, another collimation mechanism of 

astrophysical jet can be possible to exist. 
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Appendix A: Continuum Mechanics of Space-Time 

Given a priori assumption that space as a vacuum has a physical fine structure like continuum, it enables us to apply a continuum 

mechanics to the so-called “vacuum” of space. Assuming that space as vacuum is an infinite continuum, space can be considered as a 

kind of transparent elastic field, and its structure is determined by Riemannian geometry. That is, space as a vacuum performs the 

motions of deformation such as expansion, contraction, elongation, torsion and bending. The latest expanding universe theories 

(Friedmann, de Sitter, inflationary cosmological model) support this assumption. 

Since the subject of our study is a four-dimensional Riemann space as a curved space, we ascribe a great deal of importance to the 

curvature of space. We a priori accept that the nature of actual physical space is a four-dimensional Riemann space, that is, three 

dimensional space (x = x1, y = x2, z = x3) and one dimensional time (w = ct = x0), where c is the velocity of light. These four 

coordinate axes are denoted as xi (i = 0, 1, 2, 3). 

The square of the infinitesimal distance “ds” between two infinitely proximate points xi and xi + dxi is given by equation of the 

form: 

ji
ij dxdxgds 2

                                         (A1) 

where gij is a metric tensor. 

The metric tensor gij determines all the geometrical properties of space and it is a function of this space coordinate. In Riemann 

space, the metric tensor gij determines a Riemannian connection coefficient jk
i , and furthermore determines the Riemann 

curvature tensor p
ijkR  or pijkR , thus the geometry of space is determined by a metric tensor. 

Riemannian geometry is a geometry which provides a tool to describe curved Riemann space, therefore a Riemann curvature 

tensor is the principal quantity. All the components of Riemann curvature tensor are zero for flat space and non-zero for curved space. 

If a non-zero component of Riemann curvature tensor exists, the space is not flat space, but curved space. In curved space, it is well 

known that the result of the parallel displacement of vector depends on the choice of the path. Further, the components of a vector 

differ from the initial value, after we displace a vector parallel along a closed curve until it returns to the starting point. 

An external physical action such as the existence of mass energy or electromagnetic energy yields the structural deformation of 

space. In the deformed space region, the infinitesimal distance is given by: 

ji
ij dxdxgsd 2                                          (A2) 

where ijg 
 the metric tensor of deformed space region, and we use the convected coordinates ( ii xx  ). 

As shown in Fig. A, if the line element between the arbitrary two near points (A and B) in space region S (before structural 

deformation) is defined as
i

i dxgds  , the infinitesimal distance between the two near points is given by Eq. (A1): 

ji
ij dxdxgds 2

. 

Let us assume that a space region S is structurally deformed by an external physical action and transformed to space region T. In 

the deformed space region T, the line element between the identical two near point (A’ and B’) of the identical space region newly 

changes, differs from the length and direction, and becomes 
i

i dxgsd  . 
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Fig. A  Fundamental structure of Space. 

 

Therefore, the infinitesimal distance between the two near points using the convected coordinate ( ii xx  ) is given by: 

ji
ij dxdxgsd 2                                          (A3) 

The ig  is the transformed base vector from the original base vector 
ig
 and the ijg   is the transformed metric tensor from the 

original metric tensor ijg . Since the degree of deformation can be expressed as the change of distance between the two points, we 

get: 

ji
ij

ji
ijij

ji
ij

ji
ij dxdxrdxdxggdxdxgdxdxgdssd  )(22

              (A4) 

Hence the degree of geometrical and structural deformation can be expressed by the quantity denoted change of metric tensor, i.e. 

ijijij ggr                                             (A5) 

On the other hand, the state of deformation can be also expressed by the displacement vector “u” (see Fig. A). 

From the continuum mechanics [13-16], using the following equations: 

j
ji

i dxugdu :                                          (A6) 

j
ji

i dxugdsdudssd :                                   (A7) 

Here we use the usual notation “:” for covariant differentiation. As is well known, the partial derivative j
i

ji x

u
u




,  is not 

tensor equation. The covariant derivative 
k
ijkjiji uuu  ,:  is tensor equation and can be carried over into all coordinate 

systems. 

From usual continuum mechanics, the infinitesimal distance after deformation becomes as follow [13]: 

ji
jki

k
ijji

ji
ij dxdxuuuudxdxrdssd )( ::::

22                        (A8) 

The terms of higher order than second jki
k uu ::  can be neglected if the displacement is of small enough value. As the actual 

physical space can be dealt with the minute displacement from the trial calculation of strain, we get: 

ijjiij uur ::                                            (A9) 

Whereas, according to the continuum mechanics [13], the strain tensor ije  is given by: 
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)(
2

1

2

1
:: ijjiijij uure                                    (A10) 

So, using Eqs. (A5) and (A10) we get: 

ji
ij

ji
ijij dxdxedxdxggdssd 2)(22                            (A11) 

where 
ijg , ijg  is a metric tensor, ije  is a strain tensor, and 22 dssd   is the square of the infinitesimal distance between 

two infinitely proximate points xi and xi + dxi. 

From Eq. (A11), the strain of space is described as follows: 

)'(2/1 ijijij gge                                        (A12) 

Eq. (A12) indicates that a certain geometrical structural deformation of space is shown by the concept of strain. In essence, the 

change of metric tensor )( ijij gg   due to the existence of mass energy or electromagnetic energy tensor produces the strain field

ije . Namely, a certain structural deformation of space-time is described by strain tensor ije ; the physical strain is generated by the 

difference of a geometrical metric of space-time. 

Appendix B: Acceleration Induced by Spatial Curvature 

A massive body causes the curvature of space-time around it, and a free particle responds by moving along a geodesic in that 

space-time. The path of free particle is a geodesic line in space-time and is given by the following geodesic equation: 

0
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xd kj
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i

                                     (B1) 

where jk
i  is Riemannian connection coefficient,   is proper time, ix  is four-dimensional Riemann space, that is, three 

dimensional space (x = x1, y = x2, z = x3) and one dimensional time (w = ct = x0), where c is the velocity of light. These four 

coordinate axes are denoted as xi (i = 0, 1, 2, 3). 

Proper time is the time to be measured in a clock resting for a coordinate system. We have the following relation described from an 

invariant line element 2ds  between Special Relativity (flat space) and General Relativity (curved space): 

cdtgdxgd 00
0

00                                     (B2) 

From Eq. (B1), the acceleration of free particle is obtained by 
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                                   (B3) 

As is well known in General Relativity, in the curved space region, the massive body “m (kg)” existing in the acceleration field is 

subjected to the following force F i (N) : 

F m
dx

d

dx

d
m g c u u mi
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where uj, uk are the four velocity, Гi
jk is the Riemannian connection coefficient, and τ is the proper time. 

From Eqs. (B3) and (B4), we obtain: 
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Eq. (B5) yields a more simple equation from the condition of linear approximation, that is, weak-field, quasi-static, and slow 

motion (speed v << speed of light c: 10 u ): 

ii cg 00
2

00                                         (B6) 

On the other hand, the major component of spatial curvature 00R  in the weak field is given by 
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In the nearly Cartesian coordinate system, the value of 

  are small, so we can neglect the last two terms in Eq. (B7), and using 

the quasi-static condition we get 

i
iR 0000
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                                      (B8) 

From Eq. (B8), we get formally 

 iii dxxR )(00
00                                       (B9) 

Substituting Eq. (B9) into Eq. (B6), we obtain 

 i i i

a

b
g c R x dx  00

2 00 ( )                                  (B10) 

where 
i : acceleration (m/s2), 00g : time component of metric tensor, a-b: range of curved space region(m), xi: components of 

coordinate (i = 0,1,2,3), c: velocity of light, 
00R : major component of spatial curvature (1/m2). 

Eq. (B10) indicates that the acceleration field 
i  is produced in curved space. The intensity of acceleration produced in curved 

space is proportional to the product of spatial curvature 
00R  and the length of curved region. 

Eq. (B4) yields more simple equation from above-stated linear approximation ( 10 u ), 
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Setting i = 3 (i.e., direction of radius of curvature: r), we get Newton’s second law: 
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The acceleration ( ) of curved space and its Riemannian connection coefficient ( 3
00 ) are given by: 
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where c: velocity of light, g00 and g33: component of metric tensor, g00,3: ∂g00/∂x3=∂g00/∂r. We choose the spherical coordinates “ct = 

x0, r = x3, θ = x1,  = x2” in space-time. The acceleration   is represented by the equation both in the differential form and in the 

integral form. Practically, since the metric is usually given by the solution of gravitational field equation, the differential form has 

been found to be advantageous. 


