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Abstract: In this work, the efficiency of a feature-based DIC (digital image correlation) algorithm for measuring high strain 
gradients was investigated by means of numerical and actual experiments. The so-called SIFT-Meshless method consisted of a novel 
formulation involving the SIFT (scale-invariant feature transform) feature detector with a self-adaptive meshless formulation. 
Whereas the numerical experiments aimed to evaluate the accuracy and the spatial resolution, the actual experiments aimed to 
demonstrate in practice the above findings. A stereoscopic system and a micro-stereoscopic system were used to perform high strain 
gradient measurements in notched specimens of different materials and notch sizes. This paper concludes that the feature-based 
algorithm is able to provide accurate strain measurements at high strain gradient regions, even under conditions of plasticity. 
Moreover, the algorithm showed its efficiency to capture the peak strain near the notch boundary. Lastly, a spatial resolution study 
proposes a link between the desired accuracy and the pixel resolution required to perform accurate measurements of high strain 
gradients. 
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1. Introduction 

Regions of high strain gradients (i.e., large change 

in strain values within a small distance) are commonly 

observed surrounding stress concentrators, such as 

holes, shoulder fillets, and regions generally called 

shallow or deep notches. Therefore, their 

characterization requires of experimental techniques 

with high spatial resolution to capture the peak strain 

expected near the notch boundary, which is an area of 

great interest in fatigue analysis. In that field, the DIC 

(digital image correlation) [1-4] is presently the most 

employed technique by researchers. If the standard 

subset-based DIC is used [5-8], accurate strain 

measurements near the notch boundary are difficult to 

obtain because the point of measurement is considered 

by default at the center of the subset, therefore, the 

information at the boundary of the region of interest 
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(i.e., the notch boundary) is absent. Moreover, the 

measured gradient can be more flattened than the real 

one, depending on the DIC parameters used in the 

analysis. 

In recent years, alternative algorithms [9-12] have 

been proposed to optimize the standard DIC in order 

to ensure more accurate solutions when 

non-homogenous strain field mesurements are 

required. Another recently proposed algorithm is the 

SIFT-Meshless method [13] which uses a 

feature-based matching approach for correlating 

images. Features are points or small patches on the 

image that differ from their immediate surrounding 

region and can easily be extracted by means of 

efficient algorithms. The SIFT-Meshless algorithm 

adopts the SIFT [14, 15] which is a robust local 

feature extractor with outstanding performance. By 

using SIFT, displacement measurements are obtained 

by tracking the successfully matched features from the 

reference to the deformed image. Then, a meshless 
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formulation with self-adaptive domain size is applied 

for solving the displacement field and its derivatives 

(more information about the construction of meshless 

shape functions and their properties can be found in 

Ref. [16]). The self-adaptive meshless formulation 

improves the accuracy of the measurements when low 

and high strain gradient fields co-exist in the same 

analysis. Moreover, the method is capable to obtain 

strain data at the notch boundary, since feature points 

are extracted from this region. 

In this paper, the SIFT-Meshless method is used to 

perform high strain gradient measurements around 

shallow and deep U-notches. Two applications using 

different materials and different types of loading are 

presented: the elastic problem of deep U-notches in 

two polycarbonate specimens under uniaxial tensile 

load; and the elastic-plastic problem of a semicircular 

notch in a stainless steel specimen under bending load. 

In addition, a subset-based DIC analysis was 

performed by using the commercially available 

VIC-2D and VIC-3D systems from Correlated 

Solution Inc [17]. Moreover, the experiments were 

simulated using the finite element ANSYS software to 

provide an additional source of verification.  

Lastly, the spatial resolution and accuracy of the 

two DIC algorithms were investigated by means of 

numerical experiments. The spatial resolution is 

defined in Refs. [11,18] as the minimum spatial unit 

between two independent data points required to 

perform a measurement. Based on this concept, the 

spatial resolution for the subset-based DIC method is 

determined by the subset size, which defines the 

distance between two adjacent measurement points in 

the correlation process. However, this definition is not 

applicable to non-traditional DIC algorithms, such as 

the SIFT-Meshless method. From the literature review 

[11], one way to evaluate the spatial resolution for 

non-traditional DIC algorithms is by using simulated 

images undergoing sinusoidal displacements with 

various amplitudes and spatial frequencies. In the 

present study, not only a sinusoidal function but also 

an analytical stress-concentration displacement fields 

were considered to simulate different cases of strain 

gradients. The numerical experiments aimed to 

establish a methodology to evaluate the accuracy and 

spatial resolution of traditional and non-traditional 

DIC algorithms for high strain gradient measurements. 

Moreover, the final objective is to present a simple 

procedure to obtain the expected error when 

measuring the actual maximum strain at the notch 

boundary for a given optical configuration, where the 

field magnification and consequently pixel resolution 

are known beforehand.  

2. Fundamentals of the Local-based 
SIFT-Meshless Method 

2.1 Displacement Measurements Using SIFT 

The SIFT technique is used to measure relative 

displacement of features successfully matched in two 

images of the specimen’s surface—one captured 

before and the other after deformation (Fig. 1). The 

tracking feature procedure involves three steps: 

feature detection, feature description, and feature 

matching. These are briefly described as follows 

(more detailed information about the SIFT algorithm 

can be found in Refs. [14, 15]). 

The feature detection step consists in searching for 

distinctive and representative feature points. The cost 

of extracting the SIFT features is minimizing by using 

a cascade filtering approach in which the more 

expensive operations are applied only at locations that 

pass all prior tests. During this stage, features 

sensitive to noise and poorly localized features are 

discarded. 

In the feature description step, a numerical vector 

called feature descriptor is built based on the image 

properties of a support region around each feature 

point, as shown in Fig. 2. The image properties 

include gradient magnitude, gradient direction, and 

pixel intensity. The final feature descriptor is a vector 

with 128 elements describing the unique properties of 

the corresponding feature point and its support region. 
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Fig. 1  Displacement measurements obtained by matching 
SIFT features. 
 

 
Fig. 2  Example of SIFT features detected on a dotted 
image test (left), and feature identification given by its 
descriptor (right). 
 

In the feature matching step, correspondence features 

between images are computed based on the similarity 

of their descriptors. To do so, the Euclidean distance 

is the commonly used method for matching features in 

the SIFT algorithm. The best match for each descriptor 

is found by minimizing the Euclidean distance. In 

order to discard poorly or overly ambiguous matched 

features, the distance ratio between the closest 

distance and the second-closest distance is evaluated. 

The SIFT-Meshless method uses a distance ratio of 

0.3-0.4 in order to reduce the possibility of false 

matches, due to the large number of points extracted 

from images. Moreover, since a stereovision system is 

used, the SIFT features are also used to determine 

corresponding features in the stereo images for 

recovering the 3-D positions of the images captured 

by the cameras using a stereo triangulation algorithm.  

2.2 Meshless Formulation 

Once the SIFT features are located in the 

undeformed-deformed pair of images, a meshless 

formulation based on the Moving Least Squares 

approximation [19] is used for solving the 

displacement and strain field.  

Thus, the meshless approximation for the 

u-component of the displacement field can be written, 

( ) ( ) ( ) 
n

h
i i

i

u ux x x U         (1) 

where n is the number of nodes (SIFT features) in the 

support domain of any point x = [x, y]T, Φ(x) is the 

matrix of the shape function values of the i-th node, 

and U is the vector of the nodal displacements 

provided by tracking the SIFT features. 

The support domain determines the number of 

nodes to be used to support or approximate the 

function value at a specific point of evaluation. In 

addition, the support domain can be weighted using a 

weight function, which gives more influence to points 

close to the evaluation point. The authors tested 

several weight functions available in the literature, and 

similar results were obtained. The SIFT-meshless 

formulation adopted the exponential weight function. 
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          (2) 

In Eq. (2), the value of the weight function 

decreases with the distance r from the center of the 

function, i.e., points near to the evaluation point have 

more influence on the value of the function than those 

points far away. The dimension of r is calculated 

using the equation: 


 i

i

r
dm

x x
               (3) 

In this equation, dmi is the dimension of the 

influence domain determined by 
 i s idm d               (4) 

where, di is the radius of the domain, and αs is a scaling 

parameter, both initially prescribed by the analyst. 

As shown in Fig. 3, the support domain never 

extends beyond the periphery of the problem domain. 
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Fig. 3  Example of the support domain for the node x. 
 

For domains with irregularly distributed nodes (such 

as the features points provided by SIFT), the use of an 

influence domain works well to select nodes for 

constructing shape functions. 

2.2.1 Moving Least Squares Approximation  

The MLS shape function Ԅi associated with node xi 

can be calculated as 

 1 T 1( ) ( ) ( ) ( )  
m

i j iji
j

px x A x B x = P A B    (5) 

where, PT is a polynomial basis of order m (e.g., linear, 

quadratic). 

The matrices A and B are defined by 

T
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From Eq. (6), one can see that the minimum 

number of nodes needed for matrix A to be regular 

depends on the polynomial basis function used. In this 

work, a quadratic basis function was adopted. 

The expression in Eq. (1) can also be used for the 

displacement component v(x). Thus, the displacement 

field in the deformed surface is defined as 
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The strains at any point in the problem domain are 

obtained in terms of the nodal displacement 

components by using the strain-displacement relation 

defined by 
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In this way, the first order partial derivatives of the 

MLS shape with respect to x and y direction are 

required, which can be easily computed by 

differentiation of Eq. (5). It is worth mentioning that 

the small-strain approximation defined in Eq. (9) is 

used for strains less than 1%. When needed, other 

strain definitions (e.g. large strains) can be used. 

2.2.2 Self-adaptive Domain Process 

It was verified that high strain gradients require 

small influence domains to perform accurate 

approximations. On the other hand, large influence 

domains provide a smoothed solution, which is most 

appropriate for characterizing uniform strain 

distributions. Moreover, according to Eq. (4), the 

dimension of the influence domain is determined by 

the scaling parameter αs. In this way, the self-adaptive 

process consists in determining a suitable value for αs 

for each evaluation point according to the 

strain-gradient behavior. For that, the proposed test 

function shown in Fig. 4b is used. This function 

relates the strain-gradient behavior with an appropriate 

value for αs. To obtain an approximation of the 

strain-gradient behavior in the analyzed region, a first 

meshless approximation is calculated with a high 

value for αs, such as 3 or 4. Then, the gradient of this 

first approximation is computed in the direction of the 

notch tip (e.g., along the x-direction of the notch 

shown in Fig. 4a). The magnitude of this gradient 

shows how fast the strain rises in that direction, 

indicating areas of high strain concentration. Lastly, 

by using the test function in Fig. 4b, the 

approximations are re-computed with the new values 

for αs, and the corresponding strain components on the 

surface are obtained. 

3. Experimental Details 

Two  data  acquisition  systems  were  used: a 
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Fig. 4  (a) Example of gradient behavior calculated for the region ahead of the notch (b) test function used for calculating 
suitable values for αs. 
 

Table 1  Experimental matrix. 

Specimen  Notch radius Material Analysis Test Optics System 

PC-1 2.4 mm Poly-carbonate Elastic Tensile Micro 

PC-2 1.0 mm Poly-carbonate Elastic Tensile Micro 

SS-3 12.5 mm Stainless steel Elastic-plastic Bending HM lenses 
 

stereoscopic system with HM (high magnification) 

lenses for measuring areas with side-lengths ranging 

from 5 mm to 50 mm, and a micro-stereoscopic 

(micro) system for measuring areas with side-lengths 

ranging from 1 mm to 7 mm. The digital CCD 

(charge-coupled device) cameras had resolutions of 

2,448 × 2,048 pixels. Table 1 gives the experimental 

matrix. 

Calibrating stereovision systems was completed in 

the calibration module of the VIC-3D software. The 

same calibration parameters were used for both DIC 

algorithms to exclude possible sources of errors. 

The sample surfaces were covered with a uniform 

coat of white paint, after which black dots were added. 

The size and distribution of such dots is related to the 

optical system used. For the macroscopic length scales, 

the random black-and-white pattern was performed 

with spray painting. For the microscopic length scales, 

small sizes of dots were obtained with an airbrush that 

provided a smooth transition from fine to medium 

spraying. The same speckle pattern was used for both 

algorithms. In the traditional DIC approach, the 

surface preparation aims to create a random high 

contrast pattern on the specimen’s surface. In the 

SIFT-Meshless method, the objective is to provide a 

large number of potential candidates to be feature 

points that can be detected by the SIFT algorithm. 

4. Strain Concentration in Deep U-Notch 
Specimens under Linear-Elastic Tensile 
Load  

4.1 Experimental Conditions 

The experimental test performed in this section 

aimed to obtain the high strain gradient distribution 

ahead of a sharp notch subjected to tensile stresses. 

Two specimens made of polycarbonate with 3 mm 

thickness containing central deep U-notches with radii 

of 2.4 mm (PC-1) and 1 mm (PC-2) were used. The 

geometry of the samples and the experimental set-up 

are shown in Fig. 5. The mechanical properties of the 

polycarbonate, namely Modulus of Elasticity and 

Poisson’s ratio are respectively 2.3 MPa and 0.4. The 

experimental setup used the micro-stereoscopic 

system. The field of view was about 6.1 × 5.1 mm2 

surrounding the notch tip with pixel resolution of 

approximately 2.5 μm on the object plane for both 

PC-1 and PC-2 specimens. The loads were applied to 

the specimens by means of a force application system 

into which a load cell device was installed. Thus, 

successive tensile loadings of 25, 50, 100 N were 
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Fig. 5  Geometry of the polycarbonate specimens. 
 

applied to PC-1, and of 15, 30, 60 N to PC-2. One 

image was captured at each load increment. 

4.2 Results 

Surface strains around the notch were assessed with 

the VIC-3D software using subset sizes of 43 pixels 

and 49 pixels for PC-1 and PC-2, respectively. For 

both analyses, the step size was set to 11 pixels and 

strain windows of 15. In the SIFT-Meshless analysis, 

approximately 6,500 and 5,900 feature points were 

successfully matched in the PC-1 and PC-2 captured 

images, respectively. The minimum domain (di) was 

set to 200 pixels for both analyses. 

Fig. 6 depicts the strain distribution determined by 

the VIC-3D and SIFT-Meshless algorithms along the 

x-axis (y = 0) at the different loading stages. These 

strain values were compared with results determined 

by the FEM simulation using Ansys (3-D FEM 

analysis, tetrahedral elements, Solid-187).  

From these test results, it can be seen that the 

experimental measurements and the numerical results 

showed good agreement. Moreover, the high strain 

gradient regions can be clearly identified being that it 

was more severe in PC-2, where, for the maximum 

loading of 60 N, the strain value decreased drastically 

from 0.2% (2,000 με) to 0.7% (7,000 με) in a distance 

of 1 mm ahead of the notch tip. Notice that the 

maximum strains at the notch tip were successfully 

quantified by the SIFT-Meshless method. In the 

 
Fig. 6  Comparison between numerical and experimental 
strain distributions extracted from the strain component εyy 
along the x-axis (a) PC-1 specimen (b) PC-2 specimen. 
 

VIC-3D analysis, the nearest point of measurement 

from the notch was located at about 75 μm and 70 μm 

for PC-1 and PC-2, respectively. In addition, Fig. 7 

depicts the strain fields for the deformed state 

measured in PC-1 at 100 N by the two DIC 

algorithms. 

5. Strain Concentration in Circumferential 
Notch Specimen under Elastic-Plastic 
Bending 

5.1 Experimental Conditions 

The experiment performed in this section aimed to 

induce a plastic strain-gradient near the notch tip by 

four-point bending test. Therefore, it is required that 

the algorithm be able to quantify the strain-gradient 

and the nonlinear behavior of the material ahead of the 

notch tip after the yield stress (or elastic limit) is 

reached, generally at 0.2% strain (i.e., 2,000 με). 

The bending test was performed in a servo-hydraulic 

Instron machine equipped with a four-point bending 
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Fig. 7  Full-field distribution for the strain component εyy 
at 100 N (a) VIC-3D (b) SIFT-Meshless method. 
 

 
Fig. 8  Sketch of the experimental setup of the 4-point 
bending. 
 

fixture. The specimen was a 304 stainless-steel plate 

with thickness of 5 mm and a semicircular notch with 

radius of 12.5 mm. The specimen geometry and the 

four-point bending setup are shown schematically in 

Fig. 8. The mechanical properties of the stainless-steel 

were determined experimentally: Modulus of 

Elasticity (E) = 195 MPa and the yield stress Sy, 0.2% 

= 250 MPa. 

In this experiment, the stereoscopic system 

equipped with high magnification lenses was used. 

The cameras were placed in front the specimen 

resulting in a field of view of about 35 × 30 mm2 with 

a pixel resolution of approximately 14 μm on the 

object plane. Images were taken from the specimen 

with loadings of 4, 6, 8 and 10 kN, whereby the elastic 

limit was attained and plastic strains at the notch tip 

were induced.  

5.2 Results 

After the images were captured, they were processed 

using the VIC-3D software with a subset size of 25 

pixels, step size of 8 pixels, and strain windows of 15. 

In the SIFT-Meshless analysis, approximately 8,500 

feature points were successfully matched between 

images, and the minimum domain used was set to 

approximately 180 pixels. The elastic-plastic analysis 

for the 4-point bending problem was simulated using 

Ansys software (3-D FEM analysis, tetrahedral 

elements, Solid-187). The numerical solution used an 

isotropic multilinear model, described by the plastic 

stress-strain curve of the 304 stainless-steel. 

The maximum strain values obtained by the FEM 

simulation and measured by the two experimental 

techniques are plotted in Fig. 9. The inclination of the 

curve indicates the increment of the plasticity at the 

notch tip. It can be seen that significant plastic strain 

was induced after the load of 6 kN. 

Fig. 10 shows the axial strain values determined by 

the VIC-3D and SIFT-Meshless methods along the 

y-axis (x = 0) for the loadings of 8 kN and 10 kN.  

The strain distributions obtained by the two DIC 

algorithms were in good agreement with the finite 

 

Fig. 9  Maximum strain at notch tip in SS-3 specimen. 
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Fig. 10  Comparison between numerical and experimental 
strain distributions extracted from the strain component εxx 
along the selected path (a) 8 kN (b) 10 kN. 
 

element simulations using the Ansys software, even 

when significant plastic strain has been reached in the 

area surrounding the notch. In addition, strain 

measurements at the notch boundary were 

successfully obtained using the SIFT-Meshless 

method, where the maximum plastic strain was 

approximately 0.5% when the test load was 10 kN. In 

the VIC-3D analysis, the point nearest to the notch 

was located at 250 μm from the notch boundary. It can 

be also observed in Fig. 11, where the strain fields for 

the deformed state measured in SS-3 at 10 kN by the 

two DIC algorithms are shown. Moreover, it was 

noticed that the SIFT-Meshless algorithm adapts the 

calculation of the full-field solution to the presence of 

high and low strain gradients by decreasing or 

increasing the influence domain at each evaluated 

feature point. 

6. Accuracy and Spatial Resolution in High 
Strain Gradient Measurements 

The spatial resolution study was focused on the 

 
Fig. 11  Full-field distribution for the strain component εxx 
at 10 kN (a) VIC-3D (b) SIFT-Meshless method. 
 

 
Fig. 12  Speckle pattern used for numerical test. 
 

assessment of the strain error, whereas that, strain is 

mainly the final desired quantity to be measured. For 

that, different numerical tests were carried out using 

numerically deformed images by imposing 

unidirectional in-plane deformation fields with highly 

heterogeneous behavior.  

Fig. 12 shows the speckle pattern used as reference 

image (1,200 × 800 pixels) which was cropped from 

an actual experimental image (8-bit, 2,248 × 2,048 

pixels). The deformed images were generated using 

the Matlab® and its Image Processing ToolboxTM. 
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The present analysis assumed displacement field 

functions imposed along the horizontal direction with 

zero displacement in the vertical direction. The error 

assessment was based on the measurement accuracy to 

capture the maximum peak strain for the different 

configurations of imposed strain gradients. Since the 

synthetic displacement field is unidirectional 

(x-direction), the corresponding imposed strain 

gradient is the same for all vertical line (column) of 

the image. Therefore, the strains measured for all 

points located over any column can be statistically 

analyzed and compared with the imposed strain value 

to the considered column. Thus, the differences 

between the measured and imposed strains can be 

used in order to predict the expected AL (amplitude 

loss) for each DIC algorithm evaluated. For that, the 

following model was used: 

3
100

   



  
 

max
imposed max max

max
imposed

AL      (10) 

In this model, the 3-sigma indicates a 99.8% of 

certainty on amplitude determination. The arithmetic 

mean (μ) and the standard deviation (σ) are defined as: 




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max n
           (11) 

 21
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max max maxn
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Finally, the error associated with the whole field 

strain measurement in terms of the RMSE (root mean 

square error) is calculated by 

 21
( , ) ( , )   imposed measuredRMSE x y x y

n
  (13) 

where, n is the number of evaluation points. 

6.1 Synthetic Sinusoidal Strain Field 

This section involves the use of synthetic images 

undergoing sinusoidal displacements with different 

values for the period, similar to what was reported in 

recent papers [11, 20-21]. Based on these studies, the 

spatial resolution is defined as the lowest period over 

which the displacement or strain gradients can be 

reproduced without significant loss of amplitude, 

which is defined by the analyst according to the 

measurement requirements. 

The sinusoidal displacement applied in the 

x-direction to generated deformed images satisfies the 

following equation: 

 ( , ) sin 2 /u x y A x P           (14) 

where, A is the amplitude, and P is the period. 

Thus, a set of eight sinusoidal deformed images 

were generated with periods varying from 120 to 400 

pixels. For each simulation, the amplitude A in Eq. 

(14) was adjusted in order to obtain a maximum peak 

of 1.2% in strain response. Fig. 13 shows an example 

of a pre-assigned sinusoidal strain field. 

The deformed images were processed using both 

DIC algorithms. The VIC-2D software was tested 

using two different parameter settings. The first 

configuration (VIC-2D #1) uses a subset size of 21 

pixels; step size of 2 pixels; and strain window of 11. 

The second configuration (VIC-2D #2) uses a subset 

size of 41 pixels; step size of 2 pixels; and strain 

window of 21. In the SIFT-Meshless method, the 2-D 

analysis adopted two configurations corresponding to 

two different values of the radius of domain: di = 30 

pixels (SIFT-M #1) and di = 40 pixels (SIFT-M #2). 

In this case, since it is a numerical experiment and 

noise was not involved, the test function showed in 

Fig. 4b was modified for values of αs varying from 2 

to 3. Thus, by using Eq. (4), the minimum influence 

domain sizes are 60 pixels and 80 pixels for the first 

configuration (di = 30) and the second configuration 

(di = 40), respectively. 
 

 
Fig. 13  Example of imposed sinusoidal strain field (P = 
400 pixels) used in the numerical tests. 
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Fig. 14  Results obtained from synthetic sinusoidal 
gradient analysis. 
 

Figs. 14a and 14b show the percentage of amplitude 

loss to reach the strain peak (maximum and minimum 

values) for the imposed sinusoidal strain field and the 

RMSE of the computed strain field using the two DIC 

techniques. From these figures, it can be seen that the 

SIFT-Meshless method was able to reproduce 

sinusoidal strains of periods up to 200 pixels with 

values of amplitude loss less than 10%. As expected, 

more accurate results are obtained with the minimum 

radius of domain when the values of the period 

decreased, i.e. more heterogeneous field. In the same 

manner, the selection of a small virtual strain gage 

[22] size in the DIC analysis clearly improved the 

accuracy of the solution. 

6.2 Synthetic Gradient from a Closed-form Solution 

for the Stress Concentration around a Notch  

This section aimed to use a closed-form solution for 

stress concentration around notches to generate 

synthetic images in order to evaluate the accuracy and 

the spatial resolution of traditional and non-traditional 

DIC algorithms. For that, a displacement function 

derived from the Kirsch’s solution [23] was 

formulated. The Kirsch’s solution is a well-know 

analytical solution used to describe the strain 

distribution around a small circular hole in an infinite 

plate subjected to uniaxial tensile loads. Therefore, a 

more suitable error assessment can be performed in 

order to compare the performance of the DIC 

algorithms by simulating the actual strain gradient that 

develops around a notch.  

The strain distribution from the Kirsh’s solution 

plotted in Fig. 15 shows that the maximum strain at 

the notch boundary is three times higher than the 

nominal strain far away from the hole. Moreover, it 

can be seen that at a distance of half the notch radius, 

the strain decays to approximately half of its 

maximum value, named here as half-radius axial 

decay. This behavior is also observed in strain 

distributions around notches subjected to uniaxial 

tensile loading (see experimental results of the Section 

4). Therefore, this characteristic can be used as control 

parameter to obtain different configurations of strain 

gradients to be simulated. 

For simplicity, the Kirsch’s equations were first 

rewritten to apply a displacement only along the 

x-direction, as shown in Fig. 16. Hence, the horizontal 

displacement was defined as 
2 4

3
( , ) 2

6

  
   

 

R R
u x y x

x x
        (15) 

where, ε is the maximum strain at the notch boundary, 

and R is the notch radius in pixels. 

In this analysis, a set of seven deformed images 

were simulated with maximum strain value of 0.7% (ε 

= 0.007) and values of radius (R) varying from 200 to 

500 pixels, corresponding to a minimum half-radius 

axial decay of 100 pixels and maximum of 250 pixels, 

respectively. 

The VIC-2D analysis adopted two different parameter 

settings. The first configuration uses a subset size of 21 

pixels; step size of 5 pixels; and strain window of 11. 
 

 
Fig. 15  Strain distribution εxx along the horizontal axis 
from the Kirsch’s solution. 
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Fig. 16  (a) Area of interest used for validation (b) example 
of imposed strain field (ε = 0.007, R = 200 pixels, half-radius 
axial decay = 100 pixels) used in the numerical tests. 
 

 
Fig. 17  Results obtained from synthetic gradient analysis 
with closed-form solution. 
 

The second configuration uses a subset size of 41 

pixels; step size of 5 pixels; and strain window of 21. 

The SIFT-Meshless analysis adopted two different 

values for the radius of domain: di = 80 pixels and di = 

100 pixels. Similar to the subsection 6.1 the values of 

αs vary from 2 to 3. Thus, by using Eq. (4), the 

minimum influence domain sizes are 160 pixels and 

200 pixels for the first configuration (di = 80) and the 

second configuration (di = 100), respectively. 

The region outside of the area of interest shown in 

Fig. 16.a simulates the presence of a notch; therefore, 

the results obtained from this analysis shown in Fig. 

17 take into consideration the error to capture the 

strain value at the notch boundary. For the 

SIFT-Meshless method, it can be seen that values of 

amplitude loss below of 10% are expected for values 

of half-radius axial decay above 150 pixels. These 

results confirm the good performance of the method to 

obtain reliable strain measurements near the notch 

boundary. In the other hand, the VIC-2D algorithm 

presented values of amplitude loss above of 10% for 

all the simulations. It is worth mentioning that the 

maximum values were extracted directly from the 

solution, and no extrapolation was used to estimate the 

maximum value at boundary of the simulated notch. 

6.3 Discussion 

In this study, two different metrics for evaluating 

the spatial resolution of the non-traditional DIC 

algorithm have been tested: synthetic sinusoidal strain 

field and synthetic strain gradient from a closed-form 

solution. 

The first metric, proposed in Ref. [11], was focused 

on the amplitude loss to capture the maximum strain 

in a highly heterogeneous strain field. The control 

parameter is the period, P, of the sinusoidal function. 

The numerical results shown in Fig. 14 confirmed that 

the SIFT-Meshless algorithm is able to perform high 

strain gradient measurements using an adequate 

experimental configuration. 

The second metric, proposed in this paper, was 

focused on the amplitude loss to capture the maximum 

strain in the region surrounding a notch tip. The 

control parameter for this approach is the half-radius 

axial decay, which establishes that at a distance from 

the notch root equal to half the notch radius, the strain 

decreases to approximately half the maximum value 

reached. The numerical results shown in Fig. 17 

confirmed  the  capability  of  the  SIFT-Meshless 

algorithm to obtain accurate measurements along to 

the notch boundary. As shown in Fig. 18, since features 

points are detected over the notch boundary, strain 

measurements are possible to be determined along this 

critical area using the SIFT-Meshless method. This is 

in contrast to the traditional subset-based DIC algorithm 

that showed a limitation in obtaining the strain 

information at this critical area. This limitation happens 

because the point of measurement in subset-based 
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Fig. 18  Data points at ROI boundary in SIFT-Meshless 
method and traditional subset-based DIC. 
 

 
Fig. 19  Closed form solutions fitted by a sinusoidal 
function. 
 

methods is located at the center of the subset; 

therefore, a data point is obtained at least half the 

subset away from the ROI boundary. It reflects in the 

error value to find the maximum strain values, as 

shown in the numerical and experimental results. 

In addition, the half-radius axial decay can be also 

related to the pixel resolution needed to perform a 

measurement with a prescribed accuracy. For example, 

based on the results shown in Fig. 17a, values of 

amplitude loss of about 5% and 15% are expected for 

the SIFT-Meshless method and the VIC-2D software, 

respectively, when the half-radius axial decay is 200 

pixels and the maximum expected strain is 7,000 µε. 

If the radius of the notch to be analyzed is equal to 1 

mm (PC-2 specimen), i.e., R = 2·half-radius axial 

decay = 400 pixels, then the pixel resolution required 

is 2.5 μm/pixel. This example can be compared with 

the PC-2 specimen case (Section 4): a plate subjected 

to tensile stress with notch radius of 1 m, at which a 

pixel resolution of approximately 2.5 μm/pixel was 

used. From the experimental results shown in Fig. 6b, 

the values of loss amplitude obtained for the 

maximum load applied to the specimen (i.e., P = 60 N 

with maximum strain of approximately 7,000 µε at 

notch boundary) were 2% and 12% for SIFT-Meshless 

method and VIC-3D software, respectively. These 

results are in agreement with the predicted values in 

Fig. 17a. Therefore, it can be concluded that this 

approach can be used to evaluate the expected error in 

obtaining the maximum strain value using traditional 

and non-traditional DIC algorithms with a certain 

experimental configuration. 

Finally, the half-radius axial decay can be also 

related to the period of the sinusoidal function as 

shown in Fig. 19. It is shown that, the strain gradient 

behavior from the Kirsch’s solution (for describing 

stresses around a hole in an infinite plate) and from 

the Creager & Paris equations [24] (for describing 

stresses in parabolic, elliptic, U and narrow V-shaped 

notches) can be approximated by a sine function, i.e., 

half-radius axial decay = P/4. Thus, a priori error 

estimation of an algorithm can be obtained if numerical 

experiments are simulated beforehand using a 

displacement sinusoidal function with period P = 2·R. 

7. Conclusions 

The present work shows and compares by means of 

experimental and numerical tests, the ability of a 

recently developed method, the SIFT-Meshless 

method, to perform high strain gradient measurements 

around shallow and deep notches, even under 

conditions of significant plasticity. The 

experimentally determined full-field strain responses 

are in agreement with results determined from 

numerical finite element simulations and from a 

commercially available DIC software. The capability 

of the SIFT-Meshless method for obtaining reliable 

strain measurements at the notch boundary zone, 

where the maximum strain values were expected, was 
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demonstrated. Elastic and plastic strain values 

experimental measured at the different notch shapes, 

as high as 0.7% and 0.5%, respectively, with errors 

less than 3% confirmed the validity of the method. In 

addition, the performance of the both DIC tested 

algorithms in terms of spatial resolution were 

successfully checked and compared.  

Acknowledgements 

G.L.G. Gonzáles gratefully acknowledges the 

support of the CNPq–Conselho Nacional de 

Desenvolvimento Científico e Tecnológico, Brazil 

(reference 152795/2016-2). 

References 

[1] Bruck, H., McNeill, S., Sutton, M. A., and Peters III, W. 
1989. “Digital Image Correlation Using Newton-Raphson 
Method of Partial Differential Correction.” Experimental 
Mechanics 29 (3): 261-7. 

[2] Pan, B., Qian, K., Xie, H., and Asundi, A. 2009. 
“Two-dimensional digital Image Correlation for In-Plane 
Displacement and Strain Measurement: A Review.” 
Measurement Science and Technology 20 (6): 062001. 

[3] Pan, B., and Li, K. 2011. “A Fast Digital Image 
Correlation Method for Deformation Measurement.” 
Optics and Lasers in Engineering 49 (7): 841-7. 

[4] Sutton, M. A., Orteu. J. J., and Schreier, H. 2009. “Image 
Correlation for Shape, Motion and Deformation 
Measurements: Basic Concepts, Theory and 
Applications.” Springer Science & Business Media. 

[5] Lagattu, F., Brillaud, J., and Lafarie-Frenot, M.-C. 2004. 
“High Strain Gradient Measurements by Using Digital 
Image Correlation Technique.” Materials 
Characterization 53 (1): 17-28. 

[6] Qian, C., Harper, L., Turner, T., and Warrior, N. 2011. 

“Notched Behaviour of Discontinuous Carbon Fibre 

Composites: Comparison with Quasi-isotropic Non-crimp 

Fabric.” Composites Part A: Applied Science and 

Manufacturing 42 (3): 293-302. 

[7] Hwang, S.-F., and Wu, W.-J. 2012. “Deformation 
Measurement Around a High Strain-Gradient Region 
Using a Digital Image Correlation Method.” Journal of 
Mechanical Science and Technology 26 (10): 3169-75. 

[8] Ashrafi, M., and Tuttle, M. E. 2015. “High Strain 
Gradient Measurements in Notched Laminated 
Composite Panels by Digital Image Correlation.” 
Composite, Hybrid, and Multifunctional Materials 4: 
75-81. 

[9] Sun, Y., Pang, J. H., Wong, C. K., and Su, F. 2005. 
“Finite Element Formulation for a Digital Image 
Correlation Method.” Applied Optics 44 (34): 7357-63. 

[10] Pan, B., Wang, Z., and Lu, Z. 2010. “Genuine Full-field 
Deformation Measurement of an Object with Complex 
Shape Using Reliability-Guided Digital Image 
Correlation.” Optics Express 18 (2): 1011-23. 

[11] Wittevrongel, L., Lava, P., Lomov, S., and Debruyne, D. 
2014. “A self Adaptive Global Digital Image Correlation 
Algorithm.” Experimental Mechanics 55 (2): 361-78. 

[12] Zhu, R., Xie, H., Hu, Z., Jiang, L., Guo, B., and Li, C. 
2015. “Performances of Different Subset Shapes and 
Control Points in Subset-based Digital Image Correlation 
and Their Applications in Boundary Deformation 
Measurement.” Applied Optics 54 (6): 1290-301. 

[13] Gonzáles, G., and Meggiolaro, M. 2015. “Strain Field 
Measurements Around Notches Using SIFT Features and 
Meshless Methods.” Applied Optics 54 (14): 4520-8. 

[14] Lowe, D. G. 1999. “Object Recognition from Local 
Scale-Invariant Features.” The Proceedings of the 
Seventh IEEE International Conference 1150-7. 

[15] Lowe, D. G. 2004. “Distinctive Image Features From 
Scale-Invariant Keypoints.” International Journal of 
Computer Vision 60 (2): 91-110. 

[16] Liu, G.-R., and Gu, Y.-T. 2005. An Introduction to 
Meshfree Methods and Their Programming. Springer.  

[17] VIC-3D, ®Software. 2010. Correlated Solutions Inc. 
http://www.correlatedsolutions.com/. 

[18] ISO, I., and Guide, I. 2007. International Vocabulary of 
Metrology—Basic and General Concepts and Associated 
Terms.  

[19] Belytschko, T., Lu, Y. Y., and Gu, L. 1994. 

“Element‐Free Galerkin Methods.” International Journal 
for Numerical Methods in Engineering 37 (2): 229-56. 

[20] Bornert, M., Brémand, F., Doumalin, P., Dupré, J.-C., 
Fazzini, M., Grédiac, M., Hild, F., Mistou, S., Molimard, 
J., and Orteu, J.-J. 2009. “Assessment of Digital Image 
Correlation Measurement Errors: Methodology and 
Results.” Experimental Mechanics 49 (3): 353-70. 

[21] Pan, B., Wang, B., Lubineau, G., and Moussawi, A. 2015. 
“Comparison of Subset-Based Local and Finite 
Element-based Global Digital Image Correlation.” 
Experimental Mechanics 55 (5): 887-901. 

[22] Reu, P. 2015. “Virtual Strain Gage Size Study.” 
Experimental Techniques 39 (5): 1-3. 

[23] Shukla, A., and Dally, J. W. 2010. “Experimental Solid 
Mechanics.” College House Enterprises Knoxville. 

[24] Creager, M., and Paris, P. C. 1967. “Elastic Field 
Equations for Blunt Cracks with Reference to Stress 
Corrosion Cracking.” International Journal of Fracture 
Mechanics 3 (4): 247-52. 

 


