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Abstract: Long-term evolution of the Black Sea dynamics (1980-2020) is reconstructed by means of numerical simulation. The model 
of the Black Sea circulation is z-coordinate model with 4.8 km horizontal space resolution and 40 levels in vertical direction. Mixing 
processes in the upper layer are parameterized with the Mellor-Yamada turbulent model. As for the boundary conditions on the sea 
surface, we used atmospheric forcing functions for the Black Sea region provided by CMCC using regional climate model 
COSMO-CLM. These data have a spatial resolution of 14km and a daily temporal resolution. To evaluate the quality of the Black Sea 
circulation dynamics, derived from simulation, the modeling results are compared with results of the Black Sea physical reanalysis. 
This reanalysis was performed by assimilating the temperature and salinity profiles from hydrographic surveys conducted during 
1971-1993.  
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1. Introduction 

Influence of climatic changes on marine ecosystems 

is an important problem for modern oceanography. 

That is why it warrants considerable attention. An 

example of a highly stressed marine ecosystem is the 

Black Sea. The Black Sea is one of the largest enclosed 

basins in the world with a simple coastal line and 

maximum depth of about 2 km. It is connected to the 

Marmara Sea by the shallow Bosphorus Strait. The 

Black Sea marine ecosystem underwent considerable 

changes in the sixties-eighties [1]. These changes 

severely altered biomass, taxonomic composition and 

the community structure of plankton groups. A 

classical phytoplankton annual cycle with the main 

maximum biomass in spring and autumn was modified 

by an additional bloom in the summer which became 

the most pronounced. These changes were also 

accompanied by modifications in the vertical 

geochemical structure [2]. In addition to nutrient load 

factors influencing these variations, climate changes 
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can be attributed as well. Climate changes have a 

strong impact on ecosystem health, particularly in such 

semi-enclosed seas such as the Black Sea. Due to its 

small size and near isolation the Black Sea has smaller 

thermal inertia compared to large oceans. As a result, it 

is more sensitive to variability of atmosphere-ocean 

interactions. Climate changes were dominant factors in 

launching some risk processes (such as warming 

seawaters and its impact on the marine ecosystem). The 

concern is to understand how the Black Sea ecosystem 

will react to these changes. Moreover, the first step to 

understand the observed changes in the Black Sea 

ecosystem is the evaluation of the environmental status 

of the basin, under current and scenario conditions. The 

present work points to simulate the long-term 

variability of the Black Sea dynamics (hindcast and 

future scenario) as a basis for modeling the low trophic 

level marine ecosystem.  

2. Methodology of Simulation 

The model of the Black Sea circulation is a 

z-coordinate model based on the traditional primitive 

equations [3]. The simulation was carried out with 

horizontally uniform grid and 40 vertical levels 
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compressed to the sea surface. Horizontal space 

resolution is 4.8 km. This spatial resolution permits to 

resolve inter-annual, seasonal and mesoscale 

variability of the Black Sea (Rossby radii for the first 

baroclinic mode is about 25 km). To describe the 

vertical mixing processes in the upper layer more 

carefully we also used Mellor-Yamada turbulent model 

[4] coupled with the circulation model. The 

coefficients of vertical turbulent viscosity and diffusion 

where computed using turbulent energy and length 

scale, were defined by solving evolution equations.  

The boundary conditions on the lateral boundaries 

set to zero temperature, salinity and momentum fluxes 

except rivers estuaries and straits. These parts of the 

boundary are taken into account the river discharge and 

the water exchange with the Sea of Azov through the 

Kerch strait and with the Marmara Sea through the 

Bosporus, where water leaves the Black Sea in the 

upper layer (upper Bosporus current) and flows to the 

Black Sea in the lower layer (deep Bosporus current). 

The values of the rivers’ discharges were defined as 

climatic monthly mean. Due to the lack of information 

on inter-annual variability of the deep Bosporus inflow, 

its discharge was estimated based on the assumption 

that the volume of the Black Sea water is preserved 

during a year, i.e. as a residual of the annual rivers’ 

inflow, water discharge through the Kerch Strait, 

precipitations, evaporations and the upper Bosporus 

outflow. 

One of the key parameters for sea dynamics 

modeling is an atmospheric forcing. In this work, we 

used atmospheric forcing functions for the Black Sea 

region provided in the CMCC (Euro-Mediterranean 

Center on Climate Change) using regional climate 

model COSMO-CLM [5] with 14 km horizontal 

resolution. It was downloaded from FTP server in the 

frame of PERSEUS project (Deliverable Nr. 4.2) and 

interpolated on the grid of the Black sea circulation 

model. The next parameters were used as boundary 

conditions on the sea surface: total precipitation 

(accumulated over 6 hours); accumulated flux of 

surface moisture; sensible heat flux; latent heat flux; 

zonal wind in 10 m; meridional wind in 10 m; surface 

albedo (shortwave radiation); average solar radiation 

budget; average thermal radiation budget. 

3. The Main Numerical Experiment 

Using the Black Sea circulation model, briefly 

described above, we obtained hydrodynamic fields for 

four decades (1980-2020). To evaluate its quality we 

compared them with results of the Black Sea physical 

reanalysis [6]. It was performed for a twenty-three year 

time interval from (1971-1993) by assimilating the 

temperature and salinity profiles into the circulation 

model. This interval was chosen because it was the 

richest with hydrological data. During this period, three 

to ten monthly hydrographic surveys were conducted 

with irregular coverage both in space and in time. The 

mutual time period for two data sets (reanalysis and our 

modeling results) is 1980-1993 years.  

Fig. 1 represents an evolution of basin averaged 

annual-mean sea surface temperature based on 

reanalysis results (solid line) and the results of our 

modeling (dotted line). Straight lines denote linear 

trends. SST (sea surface temperature) derived from 

modeling is in general higher than from reanalysis data 

set by 0.4 C. So the model results overestimate surface 

temperature, but the tendencies of temperature 

reduction are similar in both cases. Variability in the 

upper layer can be illustrated with time diagram (Fig. 

2), where represented basin-averaged temperature as a 

function of depth and time.  

This figure demonstrates the main processes forming 

thermal structure of Black Sea waters. The main signal 

is season changes during the annual cycle. The 

seasonal thermocline is formed at the 10-40 m depth 

during a spring-summer heating. The prominent 

feature of the Black Sea is the CIL (Cold Intermediate 

Layer). Its upper and lower boundaries are identified 

by 8 °С isotherm. In the figure this water mass is 

marked as a dark domain. In addition to strong seasonal 

variability,  inter-annual changes  in water  temperature 
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