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Abstract: Approximate bound state solutions of spinless particles with a special case of equal scalar and vector modified generalized
Hulthen potential has been obtained under the massive Klein-Gordon equation. The energy eigenvalues and the corresponding wave
functions expressed in terms of a Jacobi polynomial are also obtained using the parametric generalization of the Nikiforov-Uvarov

(NU) method. Under limiting cases our result are in agreement with the existing literature. Our results could be used to study the
interactions and binding energies of the central potential for diatomic molecules in the relativistic framework which have many

applications in physics and some others related disciplines.
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1. Introduction

The studies of exact solutions of the quantum
mechanical wave equations such as Schrodinger,
Klein-Gordon,
importance in atomic and molecular physics and

Dirac, Salpeter etc. have great
have attracted much attention and interest since the
early development of quantum mechanics till
today [1-13]. In nuclear and high energy physics,
one of the interesting problems is to obtain exact
solution of the Klein-Gordon and Dirac equations.
When a particle is in a strong potential field, the

relativistic effect must be considered, which gives the

correction for non relativistic quantum mechanics [14].

In solving non relativistic or relativistic wave
equation whether for central or non central potential,
various methods are used such as Asymptotic iteration
method (AIM) [15], Super symmetric quantum

mechanics (SUSYQM) [16] shifted % expansion

[17], factorization [18], Nikiforov-Uvarov (NU)
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method [19] etc.

In the relativistic quantum mechanics, one can
apply the Klein-Gordon equation to the treatment of a
zero-spin particle. Recently, many studies have been
carried out to explore the relativistic energy
eigenvalues and corresponding wave functions of the
Klein-Gordon and Dirac equations [14, 20, 21]. The
aim of this paper is to obtain the energy eigenvlaues
and the corresponding eigen functions for the massive
Klein-Gordon particle under modified generalized
Hulthen potential in a case of equal scalar and vector
using the parametric generalization of the

Nikiforov-Uvarov (NU) method.

2. Brief Review of Nikiforov-Uvarov (NU)
Method

The conventional NU method was presented by
Nikiforov and Uvarov [19] and has been employed to
solve second order differential equations such as the
Schrodinger, Klein-Gordon and Dirac equations etc.
The parametric generalization of the NU method is
given by the generalized hyper-geometric type
equation as [27]
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According to the NU method, the energy

eigenvalues equation and eigen functions, respectively,
satisfy the following sets of equations
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and P, is the orthogonal Jacobi Polynomial.

(4)

3. Approximate Solutions of Modified

Generalized Hulthen Potential

The modified generalized Hulthen potential
(MGHP) proposed in this work is defined as

a+be™™
Viry==V,+V| ——|, 5
(7") 0 l(g+de_“r] (5)

where  V,V, are the strength of the potential,

a, b, d, g are adjustable potential parameters and
« is the screening parameter, the Hulthen potential is
a short-range potential in physics which behaves like a
coulomb potential for a small values of » and
decreases exponentially for a larger values of r [22,
23]. This potential is very important in atom and

molecular fields etc. [24-26].
The radial Klein-Gordon equation for a special case
of equal scalar and vector potential is given as [28]

[Ez M)+ 2(E +M(r))V(r)_ﬂ R =0, (6)

where M is the mass, E is the relativistic energy,
V(r) is the potential under investigation and
A =1(l+1), which is the separation constant. In this
paper, we assume that the mass of the Klein-Gordon
particle depends on the spatial coordinate as [29]

Mr)=M,+MV(r)=
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The most extensive use of such kind of mass is in
the physics of semiconductor quantum well structures
[30]. If one set My =0,a=0,V,=0,V,=b=g=1
and mapping d — b, then our proposed mass is in
agreement with the position dependent mass of Ref.
[31]. The behavior of the mass function of Eq.(7) with
position 7 is presented in Fig.1.

To obtain the eigenvalues and corresponding eigen
functions for this system, we substitute Egs. (5) and (7)
into Eq. (6) to have:
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Equation (8) has no exact solution for /# 0 due to

the potential barrier, but can be solved approximately
by using a suitable approximation scheme. Here we
make use of an approximation scheme to deal with the
potential barrier as [32]

2
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Fig. 1 Variation of mass function M (7’) with 7.
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Fig. 2 Comparison of the potential barrier fl = — with
r

the approximation for ¢¢ = (.1 and 04

where g=-d. The comparison of the

approximation scheme of Eq. (9) with the centrifugal
term ( potential barrier) for various values of « is
discussed in Fig. 2. From the graph it is obvious that
the approximation is suitable for short range potentials.

Substituting Eq. (9) into Eq. (8) and using the
transformation s =¢ % with a simple algebra we
obtain the following equation:
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Comparing Eq. (10) with Eq. (2) and making use of
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Eq. (5) the following parameters
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Substituting Egs. (11) — (15) into Eq. (2), the energy eigenvalues for this system is obtained explicitly as
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And the wave function is obtained using Egs. (3) and (15) as
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and NV, . 18 a normalization constant.
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4. Results and Discussion

By setting ¥, =0, the potential in Eq. (5) reduces
potential  [24]. If
Vo=0,a=g=1, b=d=-1 and using a2«
the potential under investigation reduces to Hulthen
potential [10, 28]. Also setting V,=0,a=>b=1,
g=1d=-1 Vi—>-V
a —2a  the Eq.(5)
Rosen-Morse potential [33]. Woods-Saxon potential
[34] could be deduced from our potential in Eq. (5) if
Vo=a=0,b=g=d =1,
Vi — —V,and mapping « —> 2. Similarly, if we
set Vy=a=d=0,b=g=1 mapping
Vi =>V,, our potential model reduces to Morse
[35].
potentials deduced from our potential models could be

to constant one set

and and

mapping

potential  in becomes

one set map

and

potential The energy spectrum for these

obtained by using the adjusted parameters in Egs. (16,
17, 18 and 19).

5. Conclusion

In this paper, we have obtained appropriately the
bound state solutions of the Klein-Gordon equation
under equal and scalar modified generalized Hulthen
potential with proper approximation to the centrifugal
term (potential barrier) using a powerful NU
technique. Explicitly, the energy eigenvalues and the
corresponding wave functions expressed in terms of
Jacobi polynomial are also obtained. Our approach
here offers one of the few examples were the
Klein-Gordon equation is solved approximately with
position-dependent mass and in an external potential.
Finally, in addition to the fundamental importance in
physics, the solutions obtained here may play a very
vital role in the study of hadrons for both theoretical
and experimental physicists.
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