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Abstract: In this paper, an approximate solution for the one-dimensional hyperbolic telegraph equation by using the q-homotopy 
analysis method (q-HAM) is proposed.The results shows that the convergence of the q- homotopy analysis method is more accurate 
than the convergence of the homotopy analysis method (HAM). 
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1. Introduction

The second-order linear hyperbolic telegraph 

equation in one-space dimension has the form: 

௧௧ݑ  ௧ݑߙ2  ݑଶߚ ൌ ௫௫ݑ  ݂ሺݔ,  , ሻݐ

ܽ  ݔ  ܾ , ݐ  0             (1) 

subject to initial conditions 

,ݔሺݑ 0ሻ ൌ ଵ݂ሺݔሻ , ܽ  ݔ  ܾ , 

,ݔ௧ሺݑ 0ሻ ൌ ଶ݂ሺݔሻ , ܽ  ݔ  ܾ 

and Dirichlet boundary conditions 

,ሺܽݑ ሻݐ ൌ ݃ଵሺݐሻ, ,ሺܾݑ ሻݐ ൌ ݃ଶሺݐሻ , 

where ߙ and ߚ are known constant coefficients. 

For  0 ߚ ,  ൌ 0  Eq. (1) represents a damped 

wave equation and for ߙ  ߚ , 0  0, it is called 

telegraph equation. 

Equations of the form Eq. (1) arise in the study of 

propagation of electrical signals in a cable of 

transmission line and wave phenomena. Interaction 

between convection and diffusion or reciprocal action 

of reaction and diffusion describes a number of 

nonlinear phenomena in physical, chemical and 

biological process [17,18,34,36]. In fact the telegraph 

equation is more suitable than ordinary diffusion 
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equation in modeling reaction diffusion for such 

branches of sciences. For example biologists 

encounter these equations in the study of pulsate 

blood flow in arteries and in one- dimensional random 

motion of bugs along a hedge [33]. Also the 

propagation of acoustic waves in Darcy-type porous 

media [35], and parallel flows of viscous Maxwell 

fluids [1] are just some of the phenomena governed 

[8,19] by Eq.(1). In [2], a numerical scheme for 

solving the secondorder one-space-dimensional linear 

hyperbolic equation has been presented by using the 

shifted Chebyshev cardinal functions. Dehghan and 

Shokri [3,4] have studied a numerical scheme to solve 

one and two-dimensional hyperbolic equations using 

collocation points and the thin-plate-spline radial basis 

functions. In [34], a numerical method, based on the 

combination of a high-order compact finite-difference 

scheme was used to approximate the spatial derivative 

and the collocation technique for the time component 

was proposed to solve the one-space-dimensional 

linear hyperbolic equation. Dehghan and Mohebbi [5] 

have developed an efficient approach for solving the 

two dimensional linear hyperbolic telegraph equation, 

using the compact finite difference approximation of 

fourth order and collocation method. A numerical 

scheme, based on the shifted Chebyshev tau method 
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was proposed in [37] to solve this equation. In [9], an 

explicit difference scheme has been discussed for the 

numerical solution of the linear hyperbolic equation of 

the form Eq. (1). 

The standard homotopy analysis method (HAM) is 

an analytic method that provides series solutions for 

nonlinear partial differential equations and has   

been firstly proposed by Liao 1992. Liao [20-31] 

developed and applied the homotopy analysis 

method(HAM) to deal with a lot of nonlinear 

problems. The HAM provides a simple way to ensure 

the convergence of a solution in a series form under 

certain conditions. The Homotopy Analysis Method 

(HAM) is based on homotopy, a fundamental concept 

in topology. Briefly, in HAM, one constructs a 

continuous mapping of an initial guess approximation 

to the exact solution of the problems to be considered. 

An auxiliary linear operator is chosen to construct 

such kind of continuous mapping and an auxiliary 

parameter is used to ensure convergence of the 

solution series. The method enjoys great freedom in 

choosing initial approximation and auxiliary linear 

operator. In 2004, Liao published the book [32] in 

which he summarized the basic ideas of the homotopy 

analysis method and gave the details of his approach 

both in the theory and on a large number of practical 

examples. 

El-Tawil and Huseen [6] proposed a method 

namely q-homotopy analysis method (q-HAM) which 

is a more general method of HAM. The essential  

idea of this method is to introduce a homotopy 

parameter, say ݍ , which varies from 0 to 1 ݊⁄  

, ݊  1  and a nonzero auxiliary parameter ݄ . At 

ݍ ൌ 0 , the system of equations usually has been 

reduced to a simplified form which normally admits a 

rather simple solution. As ݍ  gradually increases 

continuously toward 1 ݊⁄ , the system goes through a 

sequence of deformations, and the solution at each 

stage is close to that at the previous stage of the 

deformation. Eventually at ݍ ൌ 1 ݊⁄ , the system  

takes the original form of the equation and the final 

stage of the deformation gives the desired solution. 

The q-HAM has been successfully applied to 

numerous problems in science and engineering [6, 7, 

11-16]. 

2. q-Homotopy Analysis Method (q-HAM) 

Consider the following differential equation: 

ܰሾݑሺݔ, ሻሿݐ െ ݂ሺݔ, ሻݐ ൌ 0         (2) 

where N is a nonlinear operator, ሺݔ, ሻݐ  denotes 

independent variables,  ݂ሺݔ, ሻݐ  is a known function 

and ݑሺݔ,  .ሻ is an unknown functionݐ

Let us construct the so-called zero-order 

deformation equation: 

ሺ1 െ ,ݔሺሾܮሻݍ݊ ;ݐ ሻݍ െ ,ݔሺݑ ሻሿݐ ൌ 

,ݔሺܪ݄ݍ ,ݔሺሻሺܰሾݐ ;ݐ ሻሿݍ െ ݂ሺݔ,  ሻሻ     (3)ݐ

Where ݊   1  , ݍ  א ሾ0,
ଵ


ሿ  denotes the so-called 

embedded parameter , ܮ is an auxiliary linear operator 

with the property ܮሾ݂ሿ ൌ ݂ ݄݊݁ݓ 0 ൌ 0, ݄ ് 0 is an 

auxiliary parameter, ,ݔሺܪ  ሻݐ  denotes a non-zero 

auxiliary function. 

It is obvious that when ݍ ൌ ݍ ݀݊ܽ 0 ൌ
ଵ


 equation 

(2) becomes: 

,ݔሺ ;ݐ 0ሻ ൌ ,ݔሺݑ , ሻݐ  ቀݔ, ;ݐ
ଵ


ቁ ൌ ,ݔሺݑ  ሻ   (4)ݐ

respectively. Thus as ݍ increases from 0 to 
ଵ


 , the 

solution ሺݔ, ;ݐ ሻݍ  varies from the initial guess 

,ݔሺݑ ሻݐ  to the solution ݑሺݔ, ሻݐ . Having the  

freedom to choose ݑሺݔ, ,ሻݐ ,ܮ ݄, ,ݔሺܪ ሻݐ  , we can 

assume that all of them can be properly chosen so that 

the solution ሺݔ, ;ݐ ሻݍ  of equation (3) exists for 

ݍ א ሾ0,
ଵ


ሿ. 

Expanding ሺݔ, ;ݐ  :ሻ in Taylor series, one hasݍ

,ݔሺ ;ݐ ሻݍ ൌ ,ݔሺݑ ሻݐ  ∑ ,ݔሺݑ ∞ାݍሻݐ
ୀଵ   (5) 

Where: 

,ݔሺݑ ሻݐ ൌ
ଵ

ǃ
డሺ௫,௧;ሻ

డ  ୀ       (6) 

Assume that ݄, ,ݔሺܪ ,ሻݐ ,ݔሺݑ ,ሻݐ  are so properly ܮ
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chosen such that the series (5) converges at ݍ ൌ
ଵ


 

and: 

,ݔሺݑ ሻݐ ൌ  ൬ݔ, ;ݐ
1
݊

൰ ൌ 

,ݔሺݑ ሻݐ  ∑ ,ݔሺݑ ሻݐ ቀ
ଵ


ቁ


ା∞
ୀଵ      (7) 

Defining the vector 

,ݔሺݑ ሻݐ ൌ ሼݑሺݔ, ,ሻݐ ,ݔଵሺݑ ,ሻݐ ,ݔଶሺݑ ,ሻݐ … , ,ݔሺݑ ,ሻሽݐ  

differentiating equation (3) ݉ times with respect to 

ݍ and then setting ݍ ൌ 0 and finally dividing them 

by ݉! we have the so-called ݉௧ order deformation 

equation: 

,ݔሺݑሾܮ ሻݐ െ ݇ݑିଵሺݔ, ሻሿݐ ൌ 

,ݔሺܪ݄ ିଵݑሻܴሺݐ
റ ሺݔ,  ሻሻ ,       (8)ݐ

where: 

ܴሺݑିଵ
റ ሺݔ, ሻሻݐ

ൌ
1

ሺ݉ െ 1ሻǃ
߲ିଵሺܰሾሺݔ, ;ݐ ሻሿݍ െ ݂ሺݔ, ሻሻݐ

ିଵݍ߲  ୀ 

(9) 

and: 

݇ ൌ ቄ 0 ݉  1
݁ݏ݅ݓݎ݄݁ݐ ݊

           (10) 

It should be emphasized that ݑሺݔ, ݉ ሻ forݐ  1 

is governed by the linear equation (8) with linear 

boundary conditions that come from the original 

problem. Due to the existence of the factor ቀ
ଵ


ቁ


 , 

more chances for convergence may occur or even 

much faster convergence can be obtained better   

than the standard HAM. It should be noted that the 

case of ݊ ൌ 1 in equqtion (2) , standard HAM can be 

reached. 

3. Numerical Examples 

Example 3.1: The second-order hyperbolic 

telegraph equation of the form Eq. (1) with ߙ ൌ

4, ߚ ൌ 2  and ݂ሺݔ, ሻݐ ൌ ሺ2 െ ߙ2   ሻ݁ି௧ݔଶሻsinሺߚ

take the form: 

௧௧ݑ  ௧ݑ8  ݑ4 ൌ ௫௫ݑ െ 2sinሺݔሻ݁ି௧   (11) 

The initial conditions are given by 

,ݔሺݑ 0ሻ ൌ sinሺݔሻ , ,ݔ௧ሺݑ 0ሻ ൌ െsinሺݔሻ , 0  ݔ

 , ߨ2 ݐ  0 

The exact solution by [3,37] is 

,ݔሺݑ ሻݐ ൌ sinሺݔሻ݁ି௧         (12) 

This problem was solved by HAM in [10]. For q- 

HAM solution we choose the linear operator: 

,ݔሺሾܮ ;ݐ ሻሿݍ ൌ
డమሺ௫,௧;ሻ

డ௧మ        (13) 

with the property ܮሾܿଵ  ܿଶݐሿ ൌ 0 , where ܿଵ, ܿଶ    

is constants. Using initial approximation    

,ݔሺݑ ሻݐ ൌ sinሺݔሻ ሺ1 െ ሻݐ , we define a nonlinear 

operator as 

ܰሾሺݔ, ;ݐ ሻሿݍ ൌ
߲ଶሺݔ, ;ݐ ሻݍ

ଶݐ߲  8
,ݔሺ߲ ;ݐ ሻݍ

ݐ߲

 ,ݔሺ4 ;ݐ ሻݍ െ
߲ଶሺݔ, ;ݐ ሻݍ

ଶݔ߲  

We construct the zero order deformation equation: 

ሺ1 െ ,ݔሺሾܮሻݍ݊ ;ݐ ሻݍ െ ,ݔሺݑ ሻሿݐ

ൌ ,ݔሺܪ݄ݍ ,ݔሺሻܰሾݐ ;ݐ  .ሻሿݍ

we can take ܪሺݔ, ሻݐ ൌ 1  , and the ݉௧  order 

deformation equation is: 

,ݔሺݑሾܮ ሻݐ െ ݇ݑିଵሺݔ, ሻሿݐ ൌ ݄ܴሺݑିଵ
റ ሺݔ,  ሻሻݐ

(14) 

with the initial conditions for ݉  1 

,ݔሺݑ 0ሻ ൌ 0 ,          (15) 

where ݇ as define by (10) and 

ܴሺݑିଵ
റ ሺݔ, ሻሻݐ ൌ

߲ଶݑିଵሺݔ, ሻݐ
ଶݐ߲  8

,ݔିଵሺݑ߲ ሻݐ
ݐ߲

 ,ݔିଵሺݑ 4 ሻݐ െ
߲ଶݑିଵሺݔ, ሻݐ

ଶݔ߲  

2 ൬1 െ  
1
݊

݇൰ sinሺݔሻ݁ି௧ 

Now the solution of equation (11) for ݉  1 

becomes 

,ݔሺݑ ሻݐ ൌ ݇ݑିଵሺݔ, ሻݐ

 ݄ න න ܴሺݑିଵ
റ ሺݔ, ሻሻݎ

௦



௧



ݏ݀ݎ݀  ܿଵ

 ܿଶݐ 

where the constants of integration ܿଵ  and ܿଶ  are 

determined by the initial conditions (15). 
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We can obtain components of the solution using q- 

HAM as follows: 

,ݔଵሺݑ ሻݐ ൌ െ
1
6

݄ሺ12 െ 12݁ି௧  ሺെ12ݐ  ሺ9ݐ

  ሿݔሻሻሻSinሾݐ5

,ݔଶሺݑ ሻݐ ൌ െ
1
6

݄݊ሺ12 െ 12݁ି௧  ሺെ12ݐ  ሺ9ݐ

 ሿݔሻሻሻSinሾݐ5 െ
1

24
݄ଶሺെ96

 96݁ି௧  ሺ96ݐ  ሺെ36ݐ  ሺ76ݐ

 ሺ11ݐ5   ሿݔሻሻሻሻሻSinሾݐ

,ݔଷሺݑ ሻݐ ൌ
1

1008
݁ି௧݄ଶሺ42݊ሺെ96  ݁௧ሺ96 െ ሺ96ݐ

 ሺെ36ݐ  ሺ76ݐ  ሺ11ݐ5  ሻሻሻሻሻሻݐ

 ݄ሺ8064 െ ݁௧ሺ8064  ሺെ8064ݐ

 ሺ4536ݐ  ሺ2520ݐ  ሺ8064ݐ

 ሺ4704ݐ  ሺ133ݐ5

 ሿݔሻሻሻሻሻሻሻሻሻSinሾݐ5  ݊ሺെ
1
6

݄݊ሺ12

െ 12݁ି௧  ሺെ12ݐ  ሺ9ݐ

 ሿݔሻሻሻSinሾݐ5 െ
1

24
݄ଶሺെ96

 96݁ି௧  ሺ96ݐ  ሺെ36ݐ  ሺ76ݐ

 ሺ11ݐ5   ሿሻݔሻሻሻሻሻSinሾݐ

,ݔሺݑ , ሻݐ ሺ݉ ൌ 4,5,6, … ሻ can be calculated similarly. 

Then the series solution expression by q- HAM can be 

written in the form: 

,ݔሺݑ ;ݐ ݊; ݄ሻ ، ܷெሺݔ, ;ݐ ݊; ݄ሻ ൌ 

∑ ,ݔሺݑ ;ݐ ݊; ݄ሻ ቀ
ଵ


ቁ


 ெ

ୀ         (16) 

Equation (16) is an approximate solution to the 

problem (11) in terms of the convergence parameters 

݄ ܽ݊݀ ݊  . To find the valid region of ݄  , the 

݄ -curves given by the 15th order q-HAM 

approximation at ሺݔ ൌ 0.5 , ݐ ൌ 1ሻ  and different 

values of ݊  are drawn in figures ሺ1 െ 4 ). These 

figures show the interval of ݄ at which the value of 

ଵܷହሺݔ, ;ݐ ݊ሻ  is constant at certain values of 

 ,  We choose the horizontal line parallel to . ݊ ݀݊ܽ ݐ

ݔ െ  ሺ݄ሻ as a valid region which provides us with ݏ݅ݔܽ

a simple way to adjust and control the convergence 

region of the series solution (16). From these figures, 

the region of ݄ for the values of ݔ ,  in the ݊ ݀݊ܽ ݐ

curves becomes larger as ݊  increase. Figure ሺ5ሻ 

shows the comparison between ଵܷହ of HAM and ଵܷହ 

of q-HAM using different values of ݊ with the exact 

solution (12), which indicates that the speed of 

convergence for q-HAM with ݊  1  is faster in 

comparison with ݊ ൌ 1. 

The absolute errors of the 15th order solutions 

q-HAM approximate at ݔ ൌ 1 using different values 

of ݊  1  compared with 15th order solutions   

HAM approximate at ݔ ൌ 1 are calculated by the 

formula 

Absolute Error ൌ หݑ௫௧ െ  ௫ห   (17)ݑ

Figures ሺ6 െ 8ሻ  show that the series solutions 

obtained by q-HAM at ݊  1 converge faster than 

݊ ൌ 1(HAM). 

Example 3.2: The second-order hyperbolic 

telegraph equation of the form Eq. (1) with ߙ ൌ

6, ߚ ൌ 2  and ݂ሺݔ, ሻݐ ൌ െ2ߙ  sinሺݔሻ sinሺݐሻ 

ଶߚ cosሺtሻ sinሺݔሻ take the form: 
 

 
Fig. ሺሻ  ࢎ - curve for the HAM (q-HAM;  ൌ ሻ approximation solution, ࢁሺ. , ; ሻ of problem (11). 
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Fig. ሺሻ  ࢎ - curve for the ( q-HAM;  ൌ ሻ approximation solution, ࢁሺ. , ; ሻ of problem (11). 
 

 
Fig. ሺሻ  ࢎ - curve for the ( q-HAM;  ൌ ሻ approximation solution, ࢁሺ. , ; ሻ of problem (11). 
 

 
Fig. ሺሻ  ࢎ - curve for the ( q-HAM;  ൌ ሻ approximation solution, ࢁሺ. , ; ሻ of problem (11). 
 

 
Fig. ሺሻ  Comparison between ࢁ of HAM (q-HAM ሺ ൌ ሻሻ and q-HAM, ( ൌ , , ሻ with the exact solution of 

problem (11) at ࢞ ൌ  with, ( ൌ െ. ૠ, ࢎ ൌ െ. , ࢎ ൌ െ. , ࢎ ൌ െૡ. ሻ respectively. 
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Fig. ሺሻ   The absolute errors of ࢁ  of q-HAM (  ൌ ,  ൌ ሻ  for problem (11), at   ࢚    and ࢞ ൌ   using 

ࢎ ൌ െ. ૠ ࢎ ࢊࢇ ൌ െ. . 
 

 
Fig. ሺૠሻ   The absolute errors of ࢁ  of q-HAM ( ൌ ,  ൌ ሻ  for problem (11), at   ࢚    and ࢞ ൌ   using 

ࢎ ൌ െ. ૠ ࢎ ࢊࢇ ൌ െ. . 
 

 
Fig. ሺૡሻ   The absolute errors of ࢁ  of q-HAM ( ൌ ,  ൌ ሻ  for problem (11), at   ࢚    and ࢞ ൌ   using 

ࢎ ൌ െ. ૠ ࢎ ࢊࢇ ൌ െૡ. . 
 

௧௧ݑ  ௧ݑ12  ݑ4 ൌ ௫௫ݑ െ 

12  sinሺݔሻ sinሺݐሻ  4 cosሺtሻ sinሺݔሻ    (18) 

The initial conditions are given by 

,ݔሺݑ 0ሻ ൌ sinሺݔሻ,  

,ݔ௧ሺݑ 0ሻ ൌ 0 , 0  ݔ  4 

The exact solution by [2, 34] is 

,ݔሺݑ ሻݐ ൌ cosሺݐሻ sinሺݔሻ        (19) 

This problem was solved by HAM in [10]. For q- 

HAM solution we choose the linear operator: 

,ݔሺሾܮ ;ݐ ሻሿݍ ൌ
డమሺ௫,௧;ሻ

డ௧మ          (20) 

with the property ܮሾܿଵ  ܿଶݐሿ ൌ 0 , where ܿଵ, ܿଶ are 

constants. Using initial approximation ݑሺݔ, ሻݐ ൌ

sinሺݔሻ, we define a nonlinear operator as 

ܰሾሺݔ, ;ݐ ሻሿݍ ൌ
߲ଶሺݔ, ;ݐ ሻݍ

ଶݐ߲  12
,ݔሺ߲ ;ݐ ሻݍ

ݐ߲

 ,ݔሺ4 ;ݐ ሻݍ െ
߲ଶሺݔ, ;ݐ ሻݍ

ଶݔ߲  
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We construct the zero order deformation equation: 

ሺ1 െ ,ݔሺሾܮሻݍ݊ ;ݐ ሻݍ െ ,ݔሺݑ  ሻሿݐ

ൌ ,ݔሺሾ݄ܰݍ ;ݐ  .ሻሿݍ

we can take ܪሺݔ, ሻݐ ൌ 1  , and the ݉௧  order 

deformation equation is : 

,ݔሺݑሾܮ ሻݐ െ ݇ݑିଵሺݔ, ሻሿݐ ൌ ݄ܴሺݑିଵ
റ ሺݔ,  ሻሻ (21)ݐ

with the initial conditions for ݉  1 

,ݔሺݑ 0ሻ ൌ 0             (22) 

Where ݇ as define by (10) and 

ܴሺݑିଵ
റ ሺݔ, ሻሻݐ ൌ

߲ଶݑିଵሺݔ, ሻݐ

ଶݐ߲  12
,ݔିଵሺݑ߲ ሻݐ

ݐ߲

 ,ݔିଵሺݑ 4 ሻݐ െ
߲ଶݑିଵሺݔ, ሻݐ

ଶݔ߲  

൬1 െ
1
݊

݇൰ ሺ12  sinሺݔሻ sinሺݐሻ െ 4 cosሺtሻ sinሺݔሻሻ 

Now the solution of equation (18) for ݉  1 

becomes 

,ݔሺݑ ሻݐ ൌ ݇ݑିଵሺݔ, ሻݐ

 ݄ න න ܴሺݑିଵ
റ ሺݔ, ሻሻݎ

௦



௧



ݏ݀ݎ݀  ܿଵ

 ܿଶݐ 

where the constant of integration ܿଵ  and ܿଶ  are 

determined by the initial conditions (22). 

We can obtain components of the solution using q- 

HAM as follows: 

,ݔଵሺݑ ሻݐ ൌ
1
2

݄ሺെ8  ݐ24  ଶݐ5  8Cosሾݐሿ

െ 24SinሾݐሿሻSinሾݔሿ 

,ݔଶሺݑ ሻݐ ൌ
1
2

݄݊ሺെ8  ݐ24  ଶݐ5  8Cosሾݐሿ

െ 24SinሾݐሿሻSinሾݔሿ 
1

24
݄ଶሺെ3072

 ሺെ2304ݐ  ሺ1548ݐ  ሺ96ݐ5

 ሻሻሻݐ5  3072Cosሾݐሿ

 2304SinሾݐሿሻSinሾݔሿ 

,ݔሺݑ , ሻݐ ሺ݉ ൌ 3,4,5, … ሻ  can be calculated 

similarly. Then the series solution expression by q- 

HAM can be written in the form: 

,ݔሺݑ ;ݐ ݊; ݄ሻ ، ܷெሺݔ, ;ݐ ݊; ݄ሻ ൌ 

∑ ,ݔሺݑ ;ݐ ݊; ݄ሻ ቀ
ଵ


ቁ


 ெ

ୀ          (23) 

Equation (23) is an approximate solution to the 

problem (18) in terms of the convergence parameters 

݄ ܽ݊݀ ݊  . To find the valid region of ݄  , the 

݄ -curves given by the 15th order q-HAM 

approximation at ሺݔ ൌ 0.5 , ݐ ൌ 1ሻ  and different 

values of ݊ are drawn in figures ሺ9 െ 12ሻ. These 

figures show the interval of ݄ at which the value of 

ଵܷହሺݔ, ;ݐ ݊ሻ  is constant at certain values of 

 ,  We choose the horizontal line parallel to . ݊ ݀݊ܽ ݐ

ݔ െ  ሺ݄ሻ as a valid region which provides us with ݏ݅ݔܽ

a simple way to adjust and control the convergence 

region of the series solution (23). From these figures, 

the region of ݄ for the values of ݔ ,  in the ݊ ݀݊ܽ ݐ

curves becomes larger as ݊  increase. Figure ሺ13ሻ 

shows the comparison between ଵܷହ of HAM and ଵܷହ 

of q-HAM using different values of ݊ with the exact 

solution (19), which indicates that the speed of 

convergence for q-HAM with ݊  1  is faster in 

comparison with ݊ ൌ 1 . Figures ሺ14 െ 16ሻ  show 

that the series solutions obtained by q-HAM at ݊  1 

converge faster than ݊ ൌ 1(HAM). 

4. Conclusion 

In this paper, the one-dimensional hyperbolic 

telegraph equations are solved by employing the 

q-homotopy analysis method (q-HAM). The 

convergence of the q-HAM is numerically studied by 

comparison with the exact solutions of the 

problems.The results shows that the convergence of 

the q- homotopy analysis method is more accurate 

than the convergence of the homotopy analysis 

method (HAM). 
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Fig. ሺૢሻ  ࢎ - curve for the HAM (q-HAM;  ൌ ሻ approximation solution, ࢁሺ. , ; ሻ of problem (18). 
 

 
Fig. ሺሻ  ࢎ - curve for the ( q-HAM;  ൌ ሻ approximation solution, ࢁሺ. , ; ሻ of problem (18). 
 

 
Fig. ሺሻ  ࢎ - curve for the ( q-HAM;  ൌ ሻ approximation solution, ࢁሺ. , ; ሻ of problem (18). 
 

 
Fig. ሺሻ  ࢎ - curve for the ( q-HAM;  ൌ ሻ approximation solution, ࢁሺ. , ; ሻ of problem (18). 
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Fig. ሺሻ  Comparison between ࢁ of HAM (q-HAM ሺ ൌ ሻሻ and q-HAM, ( ൌ , , ሻ with the exact solution of 

problem (18) at ࢞ ൌ  with, (ࢎ ൌ െ. , ࢎ ൌ െ. , ࢎ ൌ െ, ࢎ ൌ െૠ. ሻ respectively. 
 

 
Fig. ሺሻ   The absolute errors of ࢁ  of q-HAM ( ൌ ,  ൌ ሻ  for problem (18), at   ࢚    and ࢞ ൌ   using 

ࢎ ൌ െ.  ࢎ ࢊࢇ ൌ െ. . 
 

 
Fig. ሺሻ  The absolute errors of ࢁ  of q-HAM ( ൌ ,  ൌ ሻ for problem (18), at   ࢚   and ࢞ ൌ   using 

ࢎ ൌ െ.  ࢎ ࢊࢇ ൌ െ. 
 

 
Fig. ሺሻ  The absolute errors of ࢁ  of q-HAM ( ൌ ,  ൌ ሻ for problem, (18) at   ࢚   and ࢞ ൌ   using 

ࢎ ൌ െ.  ࢎ ࢊࢇ ൌ െૠ. . 
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