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Sample size can be a key design feature that not only affects the probability of a trial’s success but also determines 

the duration and feasibility of a trial. If an investigational drug is expected to be effective and address unmet 

medical needs of an orphan disease, where the accrual period may require many years with a large sample size to 

detect a minimal clinically relevant treatment effect, a minimum sample size may be set to maintain nominal power. 

In limited situations such as this, there may be a need for flexibility in the initial and final sample sizes; thus, it is 

useful to consider the utility of adaptive sample size designs that use sample size re-estimation or group sequential 

design. In this paper, we propose a new adaptive performance measure to consider the utility of an adaptive sample 

size design in a trial simulation. Considering that previously proposed sample size re-estimation methods do not 

take into account errors in estimation based on interim results, we propose Bayesian sample size re-estimation 

criteria that take into account prior information on treatment effect, and then, we assess its operating characteristics 

in a simulation study. We also present a review example of sample size re-estimation mainly based on published 

paper and review report in Pharmaceuticals and Medical Devices Agency (PMDA). 

Keywords: adaptive design, sample size re-estimation, group sequential design, utility, Bayesian method, regulatory 

discussion, review example 

Introduction 
Recently, it has become more challenging to cope with a low probability of success in clinical trials 

because of the high costs of new drug development. An adaptive design is considered a promising tool for 
efficient drug development. This paper focuses on two adaptive sample size designs, classical group sequential 
design (GSD) and sample size re-estimation (SSR), with adaptations that are simple and basic. The sample size 
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is a key design feature that not only affects a trial’s probability of success but also determines the duration and 
feasibility of a trial and the entire period of drug development. On the other hand, adaptive sample size designs 
require additional resources to construct an appropriate system to conduct interim decision making for 
adaptations and to maintain the integrity of a trial. Therefore, it is important to assess ‘Why use adaptive 
sample sizes?’ and to assess whether adaptive sample size designs can be effective in a practical manner. 

Statistical discussion points related to adaptive sample size designs include inflation of the type I error rate 
and statistical bias. GSD can control the type I error rate; however, a trial could be terminated early because it 
appears beneficial owing to an overestimate of the treatment effect. It should be noted that an overestimation of 
an interim result cannot be corrected by type I error control. Thus, uncertainty about the magnitude of a treatment 
effect can be concerned with GSD, as discussed in the review of Sunitinib for pancreatic neuroendocrine 
tumors (U.S. Food and Drug Administration, FDA, 2011). SSR can cope with alpha inflation and statistical bias 
using previously proposed methods (Bauer and Kohne, 1999; Proschan and Hunsberger, 1995; Cui et al, 1999; 
Chen et al, 2004; Uemura et al, 2008; Brannath et al, 2006; Liu, Proschan and Pledger (2002)). Note that SSR 
with an early efficacy stopping rule can have the same overestimate problem as GSD. Another statistical 
discussion point of adaptive sample size designs is that the statistical efficiency of such designs is still 
controversial. While GSD can be more efficient than SSR (Jennison and Turnbull, 2003; Tsiatis and Mehta, 
2003), simulation settings by Jennison and Turnbull are not easy to apply in practice (Hung et al., 2005). A 
related problem, the statistical inefficiency of SSR, occurs because the interim estimate of a treatment effect 
can vary and may be unreliable. This indicates that there is some risk that re-estimated sample sizes might be 
erroneous. 

Practical and regulatory discussion points of adaptive sample size designs include the potential risk of 
operational bias with SSR, which cannot be fully avoided and statistically corrected if it occurs. Decision of 
sample size escalation and/or re-estimatited sample size can be more informative than an interim decision of 
non-stop in GSD. The FDA draft guidance for adaptive design classifies SSR as a less well-understood design 
(FDA, 2010). It is necessary to carefully consider its application in a confirmatory trial. Note, however, that 
operational bias can occur with GSD. If an unplanned additional interim analysis is conducted and real-time 
monitoring indicates a promising trend, an unplanned interim stop could seriously inflate the type I error rate 
and introduce a bias toward an overestimation of the treatment effect. Another practical and regulatory 
discussion point is that the practical motivation and utility of SSR needs to be explained and justified, 
considering the potential risk of operational bias with this design. In general, the need for flexibility in initial 
and final sample sizes is not clear because the feasibility of a trial and the risk of underpowering a study may 
leave little room for flexibility in sample sizes. For example, a maximally feasible and/or empirically 
reasonable sample size may be set for a fixed design without interim analysis and re-estimation of sample size. 
With limited resources, the gap between these sample sizes may be smaller, especially in Japan. On the other 
hand, if an investigational drug is expected to be effective and to meet unmet medical needs for an orphan 
disease (e.g., biologics targeting an inflammatory cytokine that is strongly linked to disease activity, based on 
evidence from a similar disease) but the accrual period may require many years with a large sample size to 
detect a minimal clinically relevant treatment effect, a minimum sample size may be set to maintain nominal 
power for an expected treatment effect to meet the unmet need as soon as possible. In limited situations such as 
this, there may be the need for flexibility in initial and final sample sizes, and it may be useful to consider the 
practical valueof SSR. 
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In this paper, we propose a new adaptive performance measure that takes into consideration the utility of 
an adaptive sample size design in a trial simulation. In addition, as mentioned above, previously proposed 
sample size re-estimation methods do not take into account errors in estimation based on an interim result. 
Therefore, we propose Bayesian sample size re-estimation criteria that use prior information on treatment 
effects, and we assess its operating characteristics in a simulation study.In addition, we present a review 
example of sample size re-estimation mainly based on published paper and review report in PMDA. 

A New Adaptive Performance Measure 
We will consider a placebo-controlled randomized two-arm clinical trial. Let 𝑌𝑌𝑖𝑖𝑖𝑖  denote the primary 

endpoint for subject 𝑖𝑖 allocated to group 𝑗𝑗 (𝑗𝑗 = 1: investigational drug, 2: placebo) and follow a normal 
distribution with a mean of 𝜇𝜇1 = 𝛿𝛿,𝜇𝜇2 = 0 and a common variance of 𝜎𝜎2 = 1, without the loss of generality. 
The null hypothesis is 𝐻𝐻0:𝛿𝛿 = 0 and the alternative hypothesis is 𝐻𝐻1:𝛿𝛿 > 0. The pre-assumed effect size is 
𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝 , nominal type I error rate is 𝛼𝛼, nominal power is 1 − 𝛽𝛽, and the initial planned sample size 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  per 
group is set as follows: 

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 2�
𝑧𝑧𝛼𝛼 + 𝑧𝑧𝛽𝛽
𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝

�
2

, (1) 

where 𝑧𝑧𝑢𝑢  is the (1− 𝑢𝑢)𝑡𝑡ℎ quantile of a standard normal distribution. For simplicity, one interim analysis is 
planned at information time 𝑡𝑡 (0 < 𝑡𝑡 < 1). Let stage 1 denote data fixed before the interim analysis and stage 
2 denote data fixed after 𝑡𝑡 until the final analysis. Test statistic 𝑍𝑍1, based on stage 1, is calculated as follows: 

𝑍𝑍1 =
1

�2𝑛𝑛1
�(𝑌𝑌𝑖𝑖1 − 𝑌𝑌𝑖𝑖2),
𝑛𝑛1

𝑖𝑖=1

 (2) 

where 𝑛𝑛1 is the stage 1 sample size. The final determined trial sample size 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  is as follows: 

𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = � 𝑛𝑛1, 𝑖𝑖𝑖𝑖 𝑍𝑍1 ≤ 0 or 𝑍𝑍1 ≥ 𝑐𝑐1
𝑁𝑁𝑟𝑟𝑟𝑟−𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , 𝑖𝑖𝑖𝑖0 < 𝑍𝑍1 < 𝑐𝑐1

�, (3) 

where the efficacy and futility stopping boundaries for the interim analysis are respectively 𝑐𝑐1, 0  and 
𝑁𝑁𝑟𝑟𝑟𝑟−𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  is the trial sample size re-estimated based on an interim estimate of effect size 𝛿̂𝛿1. The final 
analysis is based on 𝑍𝑍𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ℎ𝑡𝑡𝑡𝑡𝑡𝑡 , which is the weighted Z statistic proposed by Cui, Hung, and Wang (1999) in a 
group sequential trial setting. 

𝑍𝑍𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ℎ𝑡𝑡𝑡𝑡𝑡𝑡 = √𝑡𝑡𝑍𝑍1 + √1 − 𝑡𝑡𝑍𝑍2
∗, (4) 

where 𝑍𝑍2
∗ denotes the same Z statistic as equation (2), with subjects of 𝑛𝑛1 + 1 ~𝑁𝑁𝑟𝑟𝑟𝑟−𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 . 

In this section, we propose a new adaptive performance measure that takes into account the utility of an 
adaptive sample size design in a trial simulation. Note that we will mainly assume the limited situation of a 
promising orphan drug development because the need for flexibility in initial and final sample sizes may not be 
clear in other situations, as described in the introduction. Under a promising orphan drug situation with a long 
period of patient recruitment (e.g., several years), we think it may be very important to minimize the sample 
size and not to increase the sample size unnecessarily to eliminate a long waiting time of severely diseased 
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patients who may benefit from a new drug approval. Then, we will consider the opposite SSR situation, where 
one can expect a much larger effect size than the minimal clinically relevant effect compared to the usual SSR 
situation with small pre-assumed effect size that suppose to extend the maximum sample size if there remains 
some chance to show a minimal clinically relevant treatment effect. 

For the first step, we defined the expected over-size (𝐸𝐸𝐸𝐸𝐸𝐸) as follows: 
𝐸𝐸𝐸𝐸𝐸𝐸(𝛿𝛿) = {[𝐴𝐴𝐴𝐴𝐴𝐴(𝛿𝛿) −𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝛿𝛿)]+ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝛿𝛿)⁄ } × 100, (5) 

where 𝐴𝐴𝐴𝐴𝐴𝐴(𝛿𝛿) is the average sample number that is expectation of the final sample size under an adaptive 
sample size design and true effect size 𝛿𝛿 in the long run, [. ]+ denotes a function that includes a value within 
a square bracket only if [. ] > 0, otherwise, the value is considered 0. 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝛿𝛿) is the ideal sample size and is 
calculated based on the true effect size 𝛿𝛿 as follows: 

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝛿𝛿) = 2 �
𝑧𝑧𝛼𝛼+𝑧𝑧𝛽𝛽
𝛿𝛿

�
2

. (6) 

For example, if 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝛿𝛿) is 300 and requires an accrual time of 3 years, 𝐸𝐸𝐸𝐸𝐸𝐸(𝛿𝛿) = 50% means an 
adaptive sample size trial tends to reach 450 patients, and the accrual timeis 4.5 years on average in the long 
run. For the second step, we defined the expected under-power (𝐸𝐸𝐸𝐸𝐸𝐸) as follows: 

𝐸𝐸𝐸𝐸𝐸𝐸(𝛿𝛿) = ��2 �
𝑧𝑧𝛼𝛼+𝑧𝑧1−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝛿𝛿)

𝛿𝛿
�

2
−𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝛿𝛿)�

−
�2 �

𝑧𝑧𝛼𝛼+𝑧𝑧0.5

𝛿𝛿
�

2
−𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝛿𝛿)�� �× 100, (7) 

Where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝛿𝛿) is the probability that is expectation of a final test result that indicates 1 with statistical 
significance; otherwise, it is 0 under an adaptive sample size design with the true effect size 𝛿𝛿 in the long run. 
𝐸𝐸𝐸𝐸𝐸𝐸(𝛿𝛿) is a measure that indicates the extent of under-power in scale of sample size relative to a reference. 
We selected the reference under-power case of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝛿𝛿) = 0.5, which means an adaptive sample size design 
will be expected to provide a marginal result such as a p-value equal to 0.05. One should not consider the 
under-power case of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝛿𝛿) < 0.5 as the reference, because an adaptive sample size design should not be 
a way to rescue a study from poor initial planning and a promising orphan drug is expected to have at least a 
moderate treatment effect. For the third step, we defined the expected adaptive performance measure (𝐸𝐸𝐸𝐸𝐸𝐸) as 
follows: 

𝐸𝐸𝐸𝐸𝐸𝐸(𝛿𝛿) = 𝐸𝐸𝐸𝐸𝐸𝐸(𝛿𝛿) + 𝐸𝐸𝐸𝐸𝐸𝐸(𝛿𝛿). (8) 
If one shifted the balance between under-power and over-size toward the riskof under-powering a study, 

one should set higher values than 0.5 for the reference under-power. 𝐸𝐸𝐸𝐸𝐸𝐸(𝛿𝛿) is equivalent to the adaptive 
performance score that is shown as a regret function in Liu, Shu, and Cui (2008). 

Then, we proposed a new conditional adaptive performance measure (𝐶𝐶𝐶𝐶𝐶𝐶) for which over-size and 
under-power are evaluated conditionally, given as an interim result. Considering that an adaptive sample size 
design not only aims to adjust the initial sample size toward the accurate size under true 𝛿𝛿 in the long run but 
also aims to minimize the mean error of an adjusted sample size in terms of conditional power given a variable 
result in the interim analysis, we used a positive or negative function denoted by [. ]+ or [. ]−, to account for 
variability in the difference from an exact adjustment. Note that [. ]− includes a value only if [. ] < 0. Along 
with 𝐸𝐸𝐸𝐸𝐸𝐸(𝛿𝛿) in the first step, we defined conditional over-size (𝐶𝐶𝐶𝐶𝐶𝐶) as follows: 

𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿) =
∑ �𝑛𝑛2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 _𝑠𝑠 − 𝑛𝑛2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 _𝑠𝑠�+
𝑆𝑆
𝑠𝑠=1

𝑆𝑆
, (9) 
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where, 𝑆𝑆 and the subscript 𝑠𝑠, respectively, denote the number of replications of a trial simulation and the sth 
simulated clinical trial, and 𝑛𝑛2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 _𝑠𝑠 and 𝑛𝑛2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 _𝑠𝑠 , respectively, denote the finally determined stage 2 sample 
size, which equals �𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 _𝑠𝑠 − 𝑛𝑛1�, and the ideal stage 2 sample size based on the true 𝛿𝛿. Note that both of 

𝑛𝑛2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 _𝑠𝑠 and �𝑛𝑛2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 _𝑠𝑠 − 𝑛𝑛2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 _𝑠𝑠�+ becomes 0 if the sth simulated interim data meets the efficacy or futility 

stopping rule, as in equation (3) and 𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿), is on the same scale as the sample size, which is not yet divided 
by the 𝑛𝑛2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 _𝑠𝑠. We defined the conditional power function as follows: 

𝐶𝐶𝐶𝐶�𝑍𝑍1𝑠𝑠 , 𝑡𝑡,𝑛𝑛2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑠𝑠 ;  𝛿𝛿2 = 𝛿𝛿� = 𝑃𝑃𝑃𝑃�𝑍𝑍𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ℎ𝑡𝑡𝑡𝑡 > 𝑐𝑐2�𝑍𝑍1s , 𝑡𝑡,𝑛𝑛2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑠𝑠 ; 𝛿𝛿2 = 𝛿𝛿�

= 1 − Φ�
𝑐𝑐2 −√𝑡𝑡𝑍𝑍1𝑠𝑠

√1 − 𝑡𝑡
− 𝛿𝛿�

𝑛𝑛2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 _𝑠𝑠

2
�, (10) 

where  Φ(. ) denotes a standard normal distribution function. 
For the second step, we defined the conditional under-power (𝐶𝐶𝐶𝐶𝐶𝐶) as follows: 

𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿) = −
∑ �𝐶𝐶𝐶𝐶�𝑍𝑍1𝑠𝑠 , 𝑡𝑡,𝑛𝑛2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑠𝑠 ; 𝛿𝛿2 = 𝛿𝛿� − (1− 𝛽𝛽)�

−
𝑆𝑆
𝑠𝑠=1

𝑆𝑆
. (11) 

Note that �𝐶𝐶𝐶𝐶�𝑍𝑍1𝑠𝑠 , 𝑡𝑡,𝑛𝑛2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 _𝑠𝑠;  𝛿𝛿2 = 𝛿𝛿� − (1 − 𝛽𝛽)�
−

 takes 0 if the sth simulated interim data meets the 

efficacy stopping rule and takes 1− 𝛽𝛽 if it meets futility and 𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿) is on the same scale a probability that 
is not yet on the sample size scale divided by the reference case. Then, 𝑛𝑛2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 _𝑠𝑠  is calculated by solving the 
equation of 𝐶𝐶𝐶𝐶�𝑍𝑍1𝑠𝑠 , 𝑡𝑡,𝑛𝑛2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 _𝑠𝑠;  𝛿𝛿2 = 𝛿𝛿� = 1− 𝛽𝛽 as follows: 

𝑛𝑛2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 _𝑠𝑠 =
2
δ2 �

𝑐𝑐2 − √𝑡𝑡𝑍𝑍1𝑠𝑠

√1− 𝑡𝑡
+ 𝑧𝑧𝛽𝛽�

2

. (12) 

For the third step, we defined the conditional adaptive performance score (𝐶𝐶𝐶𝐶𝐶𝐶) as follows: 
𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿)

=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
∑

�𝑛𝑛2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑠𝑠 − 𝑛𝑛2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑙𝑙𝑠𝑠 �+ 𝑛𝑛2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑙𝑙𝑠𝑠�

+ � 2
δ2 �

𝑐𝑐2 − √𝑡𝑡𝑍𝑍1𝑠𝑠
√1− 𝑡𝑡

+ 𝑧𝑧1−𝐶𝐶𝐶𝐶𝑠𝑠(𝛿𝛿)�
2

− 𝑛𝑛2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑙𝑙𝑠𝑠�
−

� 2
δ2 �

𝑐𝑐2 −√𝑡𝑡𝑍𝑍1𝑠𝑠
√1 − 𝑡𝑡

+ 𝑧𝑧0.5�
2

− 𝑛𝑛2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑙𝑙𝑠𝑠�
−

�
𝑆𝑆
𝑠𝑠=1

𝑆𝑆

⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

× 100 =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
∑

�𝑛𝑛2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑠𝑠 − 𝑛𝑛2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑙𝑙𝑠𝑠 �+ 𝑛𝑛2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑙𝑙𝑠𝑠� +

�𝑛𝑛2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑠𝑠 − 𝑛𝑛2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑙𝑙𝑠𝑠 �− � 2
δ2 �

𝑐𝑐2 − √𝑡𝑡𝑍𝑍1𝑠𝑠
√1− 𝑡𝑡

+ 𝑧𝑧0.5�
2

− 𝑛𝑛2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑙𝑙𝑠𝑠�
−

�
𝑆𝑆
𝑠𝑠=1

𝑆𝑆

⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

× 100 

(13) 
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where 𝐶𝐶𝐶𝐶𝑠𝑠(𝛿𝛿)  denotes 𝐶𝐶𝐶𝐶�𝑍𝑍1𝑠𝑠 , 𝑡𝑡,𝑛𝑛2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 _𝑠𝑠;  𝛿𝛿2 = 𝛿𝛿�.  Note that, considering 𝑛𝑛2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 _𝑠𝑠  and the reference 

under-power case of sample size 2
δ2 �

𝑐𝑐2−√𝑡𝑡𝑍𝑍1𝑠𝑠

√1−𝑡𝑡
+ 𝑧𝑧0.5�

2
, which denotes a stage 2 sample size for which the 

conditional power equals 50% and can vary according to interim data 𝑍𝑍1𝑠𝑠 , the same value of 𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿) or 
𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿) can have different weights in 𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿). Therefore, if one calculates  𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿) to consider the utility of 
adaptive sample size designs in a trial simulation, we recommend simultaneously referring to 𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿) and 
𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿), which can be considered in the original scale of the sample size or probability. 

Simulation Study 
We conducted a simulation study in a simple setting to apply the adaptive performance measures 

considered in section of “A new adaptive performance measure” to various adaptive sample size designs with 
different required stage 2 sample size re-estimation criteria. 

Sample Size re-estimation Criteria 
(1) Delta-replacement criteria 
Cui, Hung, and Wang (1999) proposed delta-replacement criteria as follows: 

𝑛𝑛2
∗ = �

𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝
𝛿̂𝛿1

�
2

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑛𝑛1, (14) 

where 𝑛𝑛2
∗  denotes the required stage 2 sample size re-estimated based on the interim result. 

(2) Conditional power criteria 
Proschan and Hunsberger (1995) proposed conditional power criteria that re-estimate the required 𝑛𝑛2

∗  to 
meet  𝐶𝐶𝐶𝐶�𝑍𝑍1, 𝑡𝑡,𝑛𝑛2

∗ ;  𝛿𝛿2 = 𝛿̂𝛿1� = 1− 𝛽𝛽, and it is calculated as follows. 

𝑛𝑛2
∗ =

2

𝛿̂𝛿1
2 �
𝑐𝑐2 − √𝑡𝑡𝑍𝑍1

√1− 𝑡𝑡
+ 𝑧𝑧𝛽𝛽�

2

, (15) 

where 𝐶𝐶𝐶𝐶�𝑍𝑍1, 𝑡𝑡,𝑛𝑛2
∗ ;  𝛿𝛿2 = 𝛿̂𝛿1� is calculated under 𝛿𝛿2 = 𝛿̂𝛿1 instead of 𝛿𝛿2 = 𝛿𝛿, as in equation (10). Note that 

𝑛𝑛2
∗  can also be calculated in a usual fixed design sample size formula using the conditional error function 

1 − Φ �𝑐𝑐2−√𝑡𝑡𝑍𝑍1

√1−𝑡𝑡
� as a type I error level instead of 𝛼𝛼 (Proschan and Hunsberger,1995). Bauer and Köenig 

(2006) pointed out that 𝐶𝐶𝐶𝐶�𝑍𝑍1, 𝑡𝑡,𝑛𝑛2; 𝛿𝛿2 = 𝛿̂𝛿1� was widely distributed and variable. Therefore, 𝑛𝑛2
∗  estimated 

by conditional power criteria may be variable. 
(3) Bayesian predictive power criteria with a non-informative prior 
Spiegelhalter, Freedman, and Blackburn (1986) proposed a Bayesian predictive power approach for 

clinical trial monitoring as an alternative to the conditional power approach proposed by Halperin et al. (1982). 
Predictive power can be considered an unconditional prediction of conditional power that can take into account 
the uncertainty of the conditional power approach, which is assessed by two points of the hypothesis 
𝛿𝛿2 = 0,𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝 . Predictive power denoted by 𝑃𝑃𝑃𝑃 can be calculated using a weighted average of the conditional 
power function of 𝛿𝛿2, denoted by 𝐶𝐶𝐶𝐶𝛿𝛿2, weighted by the posterior distribution of 𝛿𝛿2, denoted by 𝑝𝑝(𝛿𝛿2|𝑍𝑍1) , as 
follows: 
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𝑃𝑃𝑃𝑃 = �𝐶𝐶𝐶𝐶𝛿𝛿2 𝑝𝑝(𝛿𝛿2|𝑍𝑍1)𝑑𝑑𝛿𝛿2. (16) 

𝑃𝑃𝑃𝑃 can be considered a conditional power based on the predictive distribution of stage 2. The predictive 
probability density function of 𝛿̂𝛿2, denoted by 𝑓𝑓𝑝𝑝�𝛿̂𝛿2�𝑍𝑍1�, is calculated as follows: 

𝑓𝑓𝑝𝑝�𝛿̂𝛿2�𝑍𝑍1� = �𝑓𝑓�𝛿̂𝛿2; 𝛿𝛿2�𝑝𝑝(𝛿𝛿2|𝑍𝑍1)𝑑𝑑𝛿𝛿2, (17) 

where subscript 𝑝𝑝 denotes the predictive distribution of stage 2 and statistics based on this distribution. 
Expectation and variance of 𝑓𝑓𝑝𝑝�𝛿̂𝛿2�𝑍𝑍1� are denoted by 𝛿𝛿𝑝𝑝  and 𝜎𝜎𝑝𝑝2, respectively, and conditional power 

is based on the predictive distribution of stage 2, denoted by 𝐶𝐶𝐶𝐶𝑝𝑝 , as follows: 

𝐶𝐶𝐶𝐶𝑝𝑝 = 1 − Φ�
𝑐𝑐2 − √𝑡𝑡𝑍𝑍1

√1 − 𝑡𝑡
−
𝛿𝛿𝑝𝑝
𝜎𝜎𝑝𝑝
�, (18) 

where Spiegelhalter, Freedman, and Blackburn (1986) show 𝐶𝐶𝐶𝐶𝑝𝑝 = 𝑃𝑃𝑃𝑃. 
Wang (2007) proposed predictive power criteria with non-informative prior criteria. Let the prior 

distribution of the effect size 𝛿𝛿, denoted by 𝑝𝑝(𝛿𝛿), follow a normal distribution with prior mean and prior 
variance as follows: 

𝑝𝑝(𝛿𝛿) ∼ 𝑁𝑁(𝛿𝛿0,𝜎𝜎0
2). (19) 

According to the Bayes rule, the posterior distribution of 𝛿𝛿, given stage 1 data denoted by 𝑝𝑝(𝛿𝛿2|𝑍𝑍1), is 
calculated as follows: 

𝑝𝑝(𝛿𝛿2|𝑍𝑍1) =
𝐿𝐿(𝛿𝛿2|𝑍𝑍1)𝑝𝑝(𝛿𝛿2)𝑑𝑑𝛿𝛿2

∫𝐿𝐿(𝛿𝛿2|𝑍𝑍1)𝑝𝑝(𝛿𝛿2)𝑑𝑑𝛿𝛿2
 

∼ 𝑁𝑁�

𝛿𝛿0
𝜎𝜎0

2 + 𝑛𝑛1
2 𝛿̂𝛿1

1
𝜎𝜎0

2 + 𝑛𝑛1
2

,
1

1
𝜎𝜎0

2 + 𝑛𝑛1
2
�. 

(20) 

Considering non-informative priors with 𝜎𝜎0
2 ∼ ∞, (20) reduces to the following: 

𝑝𝑝(𝛿𝛿2|𝑍𝑍1) ∼ 𝑁𝑁 �𝛿̂𝛿1,
2
𝑛𝑛1
�. (21) 

According to 𝑓𝑓�𝛿̂𝛿2; 𝛿𝛿2� ∼ 𝑁𝑁 �𝛿𝛿2, 2
𝑛𝑛2
�, integral calculations such as equation (17) lead to a stage 2 

predictive distribution of 𝑓𝑓𝑝𝑝�𝛿̂𝛿2�𝑍𝑍1� as follows: 

𝑓𝑓𝑝𝑝�𝛿̂𝛿2�𝑍𝑍1� ∼ 𝑁𝑁 �𝛿̂𝛿1,
2
𝑛𝑛1

+
2
𝑛𝑛2
�. (22) 

According to equation (18), (22), required stage 2 sample size based on the Bayesian predictive power 
with a non-informative prior is calculated as 
follows: 
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𝑛𝑛2
∗ = �

1
2
�𝛿̂𝛿1 �

𝑐𝑐2 − √𝑡𝑡𝑍𝑍1

√1− 𝑡𝑡
+ 𝑧𝑧𝛽𝛽�� �

2

−
1
𝑛𝑛1
�

−1

. (23) 

(4) Bayesian predictive power criteria with an informative prior 
All of the above criteria, including iii), do not depend on prior information and only use observed data in 

the clinical trial. One may think it should be avoided from using a Bayesian method with an informative prior 
in a confirmatory clinical trial. We propose using the prior in an adaptive sample size design, considering that a 
sample size determination based fully on prior information is very standard, and a sample size re-determination 
based fully on interim data can be risky. Note that we will still mainly assume the limited situation of a 
promising orphan drug, where some need for flexibility in initial and final sample sizes exists, as discussed in 
the introduction. Considering the situation of a promising effect of an orphan drug, one can target some prior 
range of clinically meaningful effect sizes denoted by 𝑃𝑃𝑃𝑃 as follows: 

𝑃𝑃𝑃𝑃 = �𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ,𝛿𝛿𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 �, (24) 

where 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝 ∈ 𝑃𝑃𝑃𝑃. Among 𝑃𝑃𝑃𝑃, one may choose 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝  to shorten the duration of a trial as much as possible 
without risking the loss of power. Now, we propose two types of prior distribution, denoted by 𝑝𝑝(𝛿𝛿) ∼
𝑁𝑁(𝛿𝛿0,𝜎𝜎0

2), based on 𝑃𝑃𝑃𝑃, for the Bayesian predictive power criteria. One type is as follows: 

𝛿𝛿0 = 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝 ,𝜎𝜎0 =
�𝛿𝛿𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 − 𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �

2𝑧𝑧𝛼𝛼
, (25) 

where the width of the 95 percent coverage interval of the prior distribution equals the width of 𝑃𝑃𝑃𝑃. Note that 
the smaller the interval the more informative a prior becomes. The second type is as follows: 

𝛿𝛿0 = 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝 ,𝜎𝜎0 = �𝛿̂𝛿1 − 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝 �. (26) 

If 𝛿̂𝛿1 is distant from 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝 , the interim data may indicate an inconsistency between 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝  and the true 𝛿𝛿, 
and the weight of the prior distribution will be reduced. Similar calculations to equation (18) and (20) lead to 
the following two types of Bayesian predictive power criteria with an informative prior, based on the prior 
distributions denoted in equations (25), (26). 

𝑛𝑛2
∗ =

⎣
⎢
⎢
⎢
⎢
⎡
1
2

⎩
⎪
⎨

⎪
⎧𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝 �

�𝛿𝛿𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 − 𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �
2𝑧𝑧𝛼𝛼

�
2

� + 𝑛𝑛1
2 𝛿̂𝛿1

1 �
�𝛿𝛿𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 − 𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �

2𝑧𝑧𝛼𝛼
�

2

� + 𝑛𝑛1 2⁄

�𝑧𝑧𝐴𝐴(𝑍𝑍1) + 𝑧𝑧𝛽𝛽��

⎭
⎪
⎬

⎪
⎫

2

− 1 �𝑛𝑛1 + 1 2�
�𝛿𝛿𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 − 𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �

2𝑧𝑧𝛼𝛼
�

2

� ��

⎦
⎥
⎥
⎥
⎥
⎤
−1

 

(27) 
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𝑛𝑛2
∗ = �

1
2
�
𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝 �𝛿̂𝛿1 − 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝 �

2⁄ + 𝑛𝑛1
2 𝛿̂𝛿1

1 �𝛿̂𝛿1 − 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝 �
2⁄ + 𝑛𝑛1 2⁄

�𝑧𝑧𝐴𝐴(𝑍𝑍1) + 𝑧𝑧𝛽𝛽�� �

2

− 1 �𝑛𝑛1 + 1 2�𝛿̂𝛿1 − 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝 �
2⁄ �� �

−1

. (28) 

Simulation Settings 
We considered a placebo-controlled randomized two-arm clinical trial, as described in section of “A new 

adaptive performance measure”, and data will be simulated from the standard normal distribution. A prior 
range of clinically meaningful effect sizes is set as 𝑃𝑃𝑃𝑃 = [0.2, 0.3], which corresponds to the required sample 
sizes of 392 and 174 per group, respectively. Corresponding to the above 𝑃𝑃𝑃𝑃 , 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝 is set as 
𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝 = 0.225,0.275, which corresponds to 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 310,208. Considering the situation of a promising 
orphan drug and a maximum sample size that may not be much larger than the initial setting, we set 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 =
0.15, corresponding to 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 698. Corresponding to 𝛿𝛿𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 0.3 of 𝑃𝑃𝑃𝑃, we set 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 174. Note that 
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑛𝑛1, with a scenario of 𝑛𝑛1 > 174. The timing of the interim analysis is set in three patterns as 
𝑡𝑡 = 0.25, 0.5, 0.75 and 𝑐𝑐1 and 𝑐𝑐2 are set as O’Brien & Flemming-type boundaries, with 𝑐𝑐1 = 3.92 and 𝑐𝑐2 =
1.96, for 𝑡𝑡 = 0.25; 𝑐𝑐1 = 2.78 and 𝑐𝑐2 = 1.98 for 𝑡𝑡 = 0.5; and 𝑐𝑐1 = 2.33 and 𝑐𝑐2 = 2.02 for 𝑡𝑡 = 0.75. Then, 
the final sample size is as follows: 

𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = �

𝑛𝑛1, 𝑖𝑖𝑖𝑖 𝑍𝑍1 ≤ 0 or 𝑍𝑍1 ≥ 𝑐𝑐1
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑖𝑖𝑖𝑖0 < 𝑍𝑍1 < 𝑐𝑐1 and 𝑛𝑛2

∗ < 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚   − 𝑛𝑛1
𝑛𝑛1 + 𝑛𝑛2

∗ , 𝑖𝑖𝑖𝑖0 < 𝑍𝑍1 < 𝑐𝑐1 and  𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚   − 𝑛𝑛1 ≤ 𝑛𝑛2
∗ ≤ 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚   − 𝑛𝑛1

𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑖𝑖𝑖𝑖0 < 𝑍𝑍1 < 𝑐𝑐1 and  𝑛𝑛2
∗ > 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚   − 𝑛𝑛1

�, (29) 

where 𝑛𝑛2
∗  is re-estimated based on the criteria shown above (1)–(4). We denoted each adaptive sample size 

design by 𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , 𝐶𝐶𝐶𝐶, 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐴𝐴, and 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐵𝐵, corresponding to equations (14), (15), (23), (27), 
and (28), respectively. Note that we set an important reference adaptive sample size design with 
conditonal power criteria under true 𝛿𝛿 instead of 𝛿̂𝛿1, denoted by 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, to assess the adaptive performance 
of each design. We also set other reference adaptive sample size designs, which are group sequential designs 
with one interim analysis at 𝑡𝑡  and are denoted by 𝐺𝐺𝐺𝐺𝐺𝐺𝑆𝑆 , 𝐺𝐺𝐺𝐺𝐺𝐺𝑀𝑀 , and  𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿  corresponding to 𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺 =
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , (𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 + 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 )/2,𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 , respectively. Note that 𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺  denotes the maximum sample size of each 
group sequential designs, and 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum sample size of this trial simulation as set above. 
According to 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 310, 208 and 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 698, 𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺 = 310, 504, 698 and 208, 453, 698, respectively. 

Simulation Results 
Figure 1 shows results comparing 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝛿𝛿), 𝐴𝐴𝐴𝐴𝐴𝐴(𝛿𝛿), and 𝐸𝐸𝐸𝐸𝐸𝐸(𝛿𝛿) of each design. Two settings

（𝑡𝑡 = 0.5, 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝 = 0.225,0.275）are arrayed in two columns. The left column corresponds to 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝 =
0.225;𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 310, and the right column corresponds to 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝 = 0.275;𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 208. Note that four 
settings（𝑡𝑡 = 0.25, 0.75, 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝 = 0.225,0.275）are omitted from the figures as important trends are similar to 
the two above. Of the three reference lines on the horizontal axis, the left denotes the lower boundary of 𝑃𝑃𝑃𝑃 
(𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 0.2), the right denotes the upper boundary (𝛿𝛿𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 0.3), and the middle denotes 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝 =
0.225,0.275 . The reference line for 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝛿𝛿) denotes a nominal power of 1 − 𝛽𝛽 = 0.8 . First, we 
compared 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝛿𝛿) between the group sequential designs (GSDs) and sample size re-estimation designs 
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(SSRs). 𝐺𝐺𝐺𝐺𝐺𝐺𝑀𝑀 ,𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 had higher 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝛿𝛿) than SSRs in every setting and reached nominal power at all 
effect sizes over 𝑃𝑃𝑃𝑃. On the other hand, the same sample size of 𝐺𝐺𝐺𝐺𝐺𝐺𝑆𝑆 as the initial sample size of SSRs 
showed consistently lower 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝛿𝛿) than SSRs and was much lower than nominal at many effect sizes in 
𝑃𝑃𝑃𝑃, especially in the right column. Only 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 among the SSRs showed nominal power in every setting 
over all 𝑃𝑃𝑃𝑃 . Then, we compared 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝛿𝛿)  among the SSRs. 𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  and 𝐶𝐶𝐶𝐶 showed similar 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝛿𝛿) and mostly had nominal power, except for 𝑡𝑡 = 0.25,𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝 = 0.275. The proposed 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐴𝐴 and 
𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐵𝐵 showed the lowest 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝛿𝛿) among the SSRs. 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐵𝐵, for which the prior distribution had 
weight based on interim data, showed a trend of higher 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝛿𝛿) than that of 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐴𝐴, with a prior having 
a constant weight according to the width of 𝑃𝑃𝑃𝑃. Note that unless the timing of the interim analysis is not early 
(𝑡𝑡 = 0.25), 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐵𝐵 was not less than 5%, compared to the nominal power in most effect sizes in 𝑃𝑃𝑃𝑃 even 
with small initial sample size (𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝 = 0.275). The important reference SSR is the ideal SSR denoted by 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
and re-estimates required stage 2 sample size based on every true effect size under the limitation of the initial 
and maximum sample sizes. 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 can be considered a robust design with less diversity of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝛿𝛿) with 
different effect sizes over 𝑃𝑃𝑃𝑃. The proposed 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐴𝐴 and 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐵𝐵 showed a trend of lower power, but 
smaller differences from 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 with every setting. Secondly, we compared 𝐴𝐴𝐴𝐴𝐴𝐴(𝛿𝛿) between each design. 
The upper of the two reference lines on the vertical axis showed an initial sample size of 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 392, 
which has just the nominal power for the lower bound of  𝑃𝑃𝑃𝑃 (𝛿𝛿𝑙𝑙𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤 = 0.2) with a fixed design. The lower 
reference line shows 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 174,  corresponding to the upper bound ( 𝛿𝛿𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 0.3 ). Compared to 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝛿𝛿), 𝐴𝐴𝐴𝐴𝐴𝐴(𝛿𝛿) trended larger withmore powerful designs. 𝐺𝐺𝐺𝐺𝐺𝐺𝑀𝑀 ,𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 , and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 were beyond 
the reference sample size of 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 392 and considered to be over-sized at every effect size in 𝑃𝑃𝑃𝑃. The 
proposed 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐴𝐴  and 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐵𝐵  showed smaller 𝐴𝐴𝐴𝐴𝐴𝐴(𝛿𝛿)  and small difference from 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  with every 
setting. Thirdly, we compared 𝐸𝐸𝐸𝐸𝐸𝐸(𝛿𝛿), which integrates the expected under-power and over-size in the long 
run, between designs. 𝐺𝐺𝐺𝐺𝐺𝐺𝑀𝑀 ,𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 showed larger 𝐸𝐸𝐸𝐸𝐸𝐸(𝛿𝛿) in 𝑃𝑃𝑃𝑃, indicating over-size in 𝑃𝑃𝑃𝑃, 
even considering the under-power of other designs. 𝐺𝐺𝐺𝐺𝐺𝐺𝑆𝑆  also showed larger 𝐸𝐸𝐸𝐸𝐸𝐸(𝛿𝛿)  in 𝑃𝑃𝑃𝑃  due to 
under-power. The proposed 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐴𝐴 and 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐵𝐵 had small differences from 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 with every setting. 
𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐴𝐴 had the minimum 𝐸𝐸𝐸𝐸𝐸𝐸(𝛿𝛿) around 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝 , and change in 𝐸𝐸𝐸𝐸𝐸𝐸(𝛿𝛿) was moderate at 𝛿𝛿, different from 
𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝 , while 𝐺𝐺𝐺𝐺𝐺𝐺𝑆𝑆 ,𝐺𝐺𝐺𝐺𝐺𝐺𝑀𝑀 ,𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 had a large slope of 𝐸𝐸𝐸𝐸𝐸𝐸(𝛿𝛿). 

Figure 2 shows results comparing 𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿),𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿), and 𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿) between the designs. 𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿) not only 
integrates under-power and over-size conditional on an interim result but also accommodates variability in the 
adaptive performance. Considering variability, differences in the adaptive performance of GSDs and SSRs 
became clear. The proposed 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐴𝐴 and 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐵𝐵 showed a trend of smaller 𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿), especially in the left 
column with 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 310, than 𝐶𝐶𝐶𝐶,𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. Next, we compared 𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿) and 𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿), which 
can be assessed on the original scale, considering the variability in the adaptive performance, and, as we 
recommend in the last of section of “A new adaptive performance measure”, can be referred to simultaneously 
with 𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿). 𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿) indicates the average loss of conditional power in each design compared to the 
nominal value of 1 − β in the probability scale. Note that 𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿) only counts as a loss, but does not count 
as excess and can take into account variability in the conditional power. 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐴𝐴 and 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐵𝐵, which 
showed a trend of lower 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝛿𝛿), had no more than 10 percent of 𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿)for most of the effect sizes in 
𝑃𝑃𝑃𝑃, which contrasts with 𝐺𝐺𝐺𝐺𝐺𝐺𝑆𝑆, using the same initial sample size. For the left column with a greater initial 
sample size, 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐴𝐴 and 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐵𝐵 had no more than 5 percent of 𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿) in 𝑃𝑃𝑃𝑃 and good performance 
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compared to the large 𝐴𝐴𝐴𝐴𝐴𝐴(𝛿𝛿) of 𝐺𝐺𝐺𝐺𝐺𝐺𝑀𝑀 ,𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿) indicates the average over-size of the 
final stage 2 sample size (𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑛𝑛1) of each design compared to the exact size with a conditional power of 
1 − β on the scale of the sample size. Note that 𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿) only counts over-size but does not count under-size 
and can consider variability in the final stage 2 sample size. The reference line on the vertical axis indicates the 
maximum over-size of the fixed design with 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 392  based on  𝛿𝛿 = 0.2  for 𝛿𝛿 = 0.3. 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐴𝐴 
showed a small 𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿),  especially with 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝 = 0.275, 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 208,  assuming likely settings for a 
promising orphan drug, in which one can expect efficacy but a longer entry period and may justify minimizing 
the final sample size to address unmet medical need immediately as possible. 

 

 

 
Figure 1. Results of a simulation study comparing 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝛿𝛿), 𝐴𝐴𝐴𝐴𝐴𝐴(𝛿𝛿), 𝐸𝐸𝐸𝐸𝐸𝐸(𝛿𝛿) of each adaptive sample size 
design with the interim analysis at 𝑡𝑡 = 0.5. 
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Figure 2. Results of simulation study comparing 𝐴𝐴𝐴𝐴(𝛿𝛿), 𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿), 𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿) of each adaptive sample size designs 
with interim analysis at 𝑡𝑡 = 0.5. 

A review Example of SSR 
Here, we will present a review example of SSR. Although it is not a situation of promising orphan drug 

development, it may be one of the rare SSR examples in which new drugs are approved in Japan. Tiotropium, 
which is mainly used in patients with chronic obstructive pulmonary disease in Japan, has recently been 
approved for asthma patients. In pivotal twin trials comparing tiotropium 5 μg and placebo for severe asthma 
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patients with three co-primary endpoints, sample size re-estimation was planned and conducted for the third 
co-primary endpoint (time to first severe asthma exacerbation evaluated in 48 weeks), based on pooled trial 
data. The first two co-primary endpoints (change from baseline of peak and trough FEV1(L) at 24 weeks) 
required 150 subjects per group for more than 90 percent power. The sample size estimation of the third 
endpoint described in the protocol is presented in Table 1. According to the first table of Table 1, which shows 
the distribution of the number of severe asthma exacerbations estimated from an omalizumab trial, the 
proportion of patients with no exacerbations are assumed to be about 0.7 to 0.8. Note that omalizumab is a 
biological drug that can be used for severe asthma patients in Japan. 

Under the omalizumab assumption, the prior hazard ratio was set to 0.562, as shown at the middle row in 
the second table of Table 1, which indicates the sample size sensitivity for the third co-primary endpoint. The 
required sample size as the pooled total is estimated to be 574. If an interim estimate of the hazard ratio exceeds 
0.6 based on 65 events, the pooled total sample size should be increased to 812 according to the table. This 
corresponds to an increase in target hazard ratio from 0.562 to 0.611, which may require only a minor change in 
the targeted treatment effect. The final p-value is computed by the weighted Z statistic proposed by Cui, Hung, 
and Wang (1999). In fact, a pre-specified interim analysis was performed once at 65 events for the pooled total; 
as a result, the sample size was increased to approximately 400 patients per trial from 300 that was set at the 
trial start. Results were cited in the PMDA review report. 

 

Table 1 
Distribution of the number of severe asthma exacerbations estimated from an omalizumab trial and sample size 
sensitivity for the third co-primary endpoint, time to first severe asthma exacerbation in the48th week, based on 
pooled tiotropium trial data. These tables are reproduced from the protocol  
(http://www.nejm.org/doi/suppl/10.1056/NEJMoa1208606/suppl_file/nejmoa1208606_protocol.pdf) 
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In terms of the first two co-primary endpoints, the superiority to placebo was demonstrated. The 
differences, 95% confidence intervals and p-values between tiotropium and placebo in terms of change from 
baseline of peak FEV1(L) at 24 weeks for each trial were 0.086 [0.020, 0.152], p=0.0110, 0.154 [0.091, 0.217], 
p<0.0001, respectively. The differences, 95% confidence intervals and p-values between tiotropium and 
placebo in terms of change from baseline of trough FEV1(L) at 24 weeks for each trial were 0.088 [0.027, 
0.149], p=0.0050, 0.111 [0.053, 0.169], p=0.0002. In the PMDA review, trough FEV1 is considered one of the 
most important endpoints to evaluate a controller drug with a long-acting bronchodilator such as tiotropium. 
Therefore, the results of trough FEV1, which was consistent in pivotal twin trials, were important to the 
assessment of asthma indication. The primary result of the third endpoint was as follows: the adjusted hazard 
ratio, 95% confidence interval and the adjusted p-value (Cui, Hung and Wang, 1999) between tiotropium and 
placebo in terms of time to first severe asthma exacerbation evaluated in 48 weeks was 0.77 [0.60, 0.98], 
p=0.0343. Statistical review points relating to SSR are as follows: Accrual curves, demographic and baseline 
disease characteristics, and the first two co-primary endpoints were compared between the before and after 
interim analyses in each trial. Similar comparisons were also considered for pooled endpoints, not only the third 
primary but also the secondary exacerbation endpoint and symptomatic asthma exacerbation. The PMDA 
discussed whether the third primary result should be included in the section of trial results of the label and 
concluded that it should be included. 

Discussion 
In this paper, we proposed new adaptive performance assessment measures to evaluate the utility of an 

adaptive sample size design in a trial simulation, especially in the situation of a promising orphan drug, with a 
long accrual period and the expectation of benefit and low risk. As proposed, 𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿), 𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿), and  𝐶𝐶𝐶𝐶𝐶𝐶(𝛿𝛿) 
take into account the mean error of an adaptive decision, given various results in the interim analysis, and can 
measure different performance from 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝛿𝛿), 𝐴𝐴𝐴𝐴𝐴𝐴(𝛿𝛿), 𝐸𝐸𝐸𝐸𝐸𝐸(𝛿𝛿),  which measure the overall trial 
performance in the long run. We believe that the overall trial performance strongly depends on the initial 
settings of design parameters, prior information, and initial careful planning, considering 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝛿𝛿), required 
sample size, accrual duration, feasibility, and other factors. Given initial careful planning, a decision to change 
from the initial design setting based on the results of the interim analysis should be made conservatively. 
Therefore, sample size re-estimation may be an optional aid to ease limitations in the initial planning. The 
proposed Bayesian sample size re-estimation criteria may fit to the above purpose of SSR. Our brief example of 
a trial simulation showed that the Bayesian criteria of 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐴𝐴 and 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐵𝐵 could approach 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, which is 
the hypothetical adaptive sample size design given the true effect size, especially near the initial setting of 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝 , 
denoted by 𝑃𝑃𝑃𝑃. On the other hand, our simulation showed that no design could necessarily cope with a range 
of effect sizes in an efficient and precise manner. In addition, considering the low probability of efficacy if a 
trial is stopped after the interim analysis and the high probability of reaching 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 , GSD without SSR showed 
a limited ability to cope with the potential gap between 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝  and the true effect size and variability in interim 
results. Therefore, it is important to balance the potential risk and utility of each design, based on prior belief or 
expectations for the risk/benefit profile of an investigational drug. The review example of SSR provided in 
section of “A review example of SSR”, though no large issues were presented, showed that to gain highly 
conclusive evidence for the third endpoint, the target effect size and/or range of sample size sensitivity should 
be set conservatively (wider), considering the effect size observed in a similar trial of an inhaled combination of 
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corticosteroid and long-acting bronchodilator drugs. It is better to conduct another larger-sized confirmatory 
trial to confirm the reproducibility of the reduction in severe exacerbation of severe persistent asthma 
considering the moderate effect size. 
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