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Abstract: In this paper, a manufacturing supply chain system composed by a single-product machine, a buffer and a stochastic 
demand is considered. A stochastic fluid model is adopted to describe the system and to take into account stochastic delivery times. 
The objective of this paper is to evaluate the optimal buffer level used in hedging point policy taken into account planned delivery 
times, machine failures and random demands. This optimal buffer allows minimizing the sum of inventory, transportation, lost sales 
and late delivery costs. Infinitesimal perturbation analysis method is used for optimizing the proposed system. Using the stochastic 
fluid model, the trajectories of buffer level are studied and the infinitesimal perturbation analysis estimators are evaluated. These 
estimators are shown to be unbiased and then they are implanted in an optimization algorithm, which determines the optimal buffer 
level in the presence of planned delivery time. Also in this work, we discuss the advantage of the use of the infinitesimal perturbation 
analysis method comparing to classical simulation methods. 
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1. Introduction 

Stochastic fluid model [1-4] is widely used to 

control, analyze, and improve the performance of 

manufacturing supply chain systems. This model has 

been long adopted as a modeling technique of queuing 

theory, for analysis and synthesis of discrete event 

systems [5, 6]. Many researchers use stochastic fluid 

model for optimizing and evaluating supply chain 

systems, due to the fact that this model is simple to 

study; it makes the performance analysis efficient 

without the need to track part by part and hence 

allowing focusing on important events such as 

machine failures and inventory full/empty. 

Furthermore, stochastic fluid model is considered as a 

very useful model for simulating manufacturing 

supply chain systems [7, 8]. Tzenova et al. [9] used a 

stochastic fluid model for analyzing and modelling a 

system composed by a single server and K separate 

infinite capacity buffers, the objective is to study the 

output process of multiclass fluid models with static 
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priorities. In this paper, we will consider a continuous 

flow manufacturing supply chain system, and then this 

system can be easily modeled by using stochastic fluid 

model. Furthermore, using such a model, the IPA 

(infinitesimal perturbation analysis) [10-12] method 

can be invoked to optimize the proposed system. IPA 

is a well-developed approach that has been used to 

determine unbiased gradient estimators. Therefore, the 

use of stochastic fluid model allows opening up the 

possibility to derive unbiased estimators. In this paper, 

stochastic fluid model is adopted to describe the 

system and to take into account random delivery 

times.  

Nowadays, many industrial companies are working 

to optimize their manufacturing supply chain system 

in order to produce and to deliver in time. These 

companies are working to reduce transportation delays 

such as the delivery time [13-16], which is the period 

of time that the product takes between a 

manufacturing warehouse and a costumer. 

Furthermore, these companies are proposing planned 

delivery time as a marketing strategy to attract 

customers. In this paper, we consider the delivery 
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times as a random variable. Indeed, the producer 

proposes for customers a fixed delivery time called 

planned delivery time. By a planned delivery time, we 

mean the time from a customer’s order until the due 

date. However, if the products do not arrive on or 

before the planned delivery time (late delivery of 

products), these products are accepted by the customer, 

but are penalized with a late delivery penalty. In this 

paper, we will investigate how to integrate and to 

model the random delivery time in the stochastic fluid 

model while preserving its simplicity and analyticity. 

Thereafter, we will determine the optimal buffer level 

taking into account random delivery times and 

machine failures, in order to minimize the inventory, 

transportation, lost sales and late delivery costs. Under 

this stochastic fluid model, a stochastic optimization 

problem will be formulated what aims to minimize the 

total expected cost via a simulation based 

optimization. 

IPA [8, 17] is proposed in this study. Indeed, IPA is 

a technique, which allows estimating the gradients of 

a random variable with respect to some parameters of 

interest (e.g., buffer level, production rate, etc.). Then, 

these gradients can be used in stochastic 

approximation algorithms for determining the optimal 

parameter setting. Ho et al. [18] used a PA 

(perturbation analysis) method for determining the 

optimal allocation of buffers in a serial production line. 

The PA method was applied at the beginning of 1980s 

in the domain of discrete event systems; indeed, the 

event-driven dynamics give rise to state trajectories 

(sample paths) from which one can very efficiently 

and no intrusively extract sensitivities of various 

performance metrics with respect to at least certain 

types of design or control parameters. Furthermore, 

the PA was used as a technique for the performance 

evaluation of discrete event systems through 

information obtained in a single simulation run    

[19-21]. This has led to the development of a theory 

of PA in discrete event systems. Besides, the most 

successful kind of PA is when the perturbation of 

parameters is infinitesimal. This kind of PA theory is 

IPA which is mostly used due to its ease of 

implementation and simplicity. 

Nowadays, IPA is essentially applied to stochastic 

fluid models [22]. Markou and Panayiotou [23] 

applied the IPA method to stochastic fluid model and 

determined the estimators of the performance metrics 

of interest with respect to the buffer size. The authors 

used these estimators in a stochastic approximation 

algorithm to control the buffer size of the nodes of a 

cellular network to optimize the overall network’s 

performance. Panayiotou and Cassandras [24] 

determined the optimal capacities (or hedging points) 

of the finished goods and work-in-process buffers for 

minimizing a cost function. They estimated the 

gradient of the cost function. Also, Markou and 

Panayiotou [23] investigated the implementation of 

various IPA estimators that have been derived based 

on a stochastic fluid model for the optimization of 

parameters (buffer size) of a discrete event system. 

Yao and Cassandras [25] used the IPA method for 

deriving the gradient of the performance metrics of 

interests with respect to the lot-size parameters. The 

authors proved that these estimators are unbiased 

before using them in an algorithm to obtain optimal 

lot sizes. Indeed, the unbiasedness is the principal 

condition for making the application of IPA useful in 

practice, since it enables the use of the sample IPA 

derivative in control and optimization methods that 

employ stochastic gradient-based techniques. Then, 

these estimators could be used in stochastic 

approximation algorithm. Another kind of the PA 

method called FPA (finite perturbation analysis) 

method [26, 27].  

The contribution of this paper is to apply IPA 

method on stochastic fluid model with planed delivery 

time in order to derive unbiased gradient estimators of 

the cost function. To the best of our knowledge, there 

is no study that applies the IPA method to such system. 

Therefore, the consideration of system with planed 

delivery time combined with IPA method is a very 
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recent topic, and the few existing results indicate that 

the problem may become challenging, as the IPA 

derivatives are more complicated than those that 

would be obtained for the system without planed 

delivery time. 

The paper is organized as follows. The stochastic 

fluid model with planned delivery time is presented in 

Section 2. In Section 3, the IPA method is applied on 

the stochastic fluid model. Numerical results are 

presented in Section 4. Finally, the last section 

concludes the paper and gives some perspectives to 

our work. 

2. Manufacturing Supply Chain System with 
Planned Delivery Time 

The studied manufacturing supply chain system is 

composed by a single-product machine M, a buffer B 

and a customer who demands at every time t a quantity 

of products denoted by d(t). We note that the demand 

d(t) is random and is generated by a uniform 

distribution (for the demand event) and truncated 

normal distribution (for the demand value). The 

quantity of products outgoing from the buffer B at time 

t, are transported to the customer and take a delivery 

time, denoted as τ(t), to arrive to the customer. The 

producer proposes for the customer a constant planned 

delivery time denoted as τpl. The transported products 

can arrive to the customer before the end or exactly on 

time (i.e., τ(t) ≤ τpl ), or can arrive to the customer after 

the end of τpl (i.e., τ(t) > τpl). The number of products 

transported between the buffer and the customer at 

time t is denoted by g(t) (Fig. 1).  

We assume that the machine is never starved. The 

machine M is either up or down. The state of the 

machine at time t, denoted (t), is given by: 






downismachine0

upismachine1
)(

if

if
t       (1) 

When the machine is up, the production rate of M, 

denoted by u(t), could take a value between 0 and its 

maximum rate U, i.e., 0 ≤ u(t) ≤ U. When the machine 

is down u(t) = 0. The times to failure and times to 

repair are random. The failure/repair process is an 

independent random process. It does not depend on the 

system parameters. We denote by x(t) the buffer level 

at time t. Furthermore, we assume in this paper that: 

 If the demand is unsatisfied, the demand is lost 

with a corresponding cost (lost sales cost);  

 For building the buffer B and to avoid having 

always unsatisfied demands, we assume that the 

maximal production rate permits to satisfy the demand, 

i.e., U ≥ d(t) t ; 

 At time t = 0, we suppose that we have enough 

parts in the buffer to satisfy the first demand, i.e., x(0)  

d(0); 

 The delivery time τ(t) is random and strictly 

greater than zero (τ(t) > 0); 

 We assume that, the average system rate is larger 

than the demand.  

Remark 1: In the first step of the approach for 

determining the optimal buffer level, we suppose that 

the capacity of buffer B is infinite, and then the optimal 

buffer level will be determined according to the 

hedging point. 

The possible events at every time t are: machine 

failure (PM), repair (RM), buffer full (when the buffer 

level equals to the optimal buffer level) (SS) which 

occurs at time instant tss, buffer empty, i.e., x(t) =0 (SV) 

and demand (DE).  
 

 
Fig. 1  Studied manufacturing supply chain system.  
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Assumption 1: For application of IPA and to avoid 

important discontinuities, we have to consider only one 

event at a time, thus we propose priorities between 

events if different events occur at the same time. The 

priority is assigned in a decreasing order as follows:  

 buffer event (SS or SV); 

 machine event (RM or PM); 

 demand event (DE). 

Assumption 2: We assume that the cost function is 

differentiable in [0, ). 

We denote by x(t) the buffer level at time t. The 

number of parts in the buffer depends on the production 

speed u(t) and the demand d(t):  

)()(
)(

tdtu
dt

xdx
              (2) 

In this paper, we choose hedging point policy [28, 29] 

as a control policy, which ensures that the part does not 

exceed a given number of products, denoted by h. 

Furthermore, the hedging point has been proved to be 

the optimal policy for a one-product manufacturing 

system [30]. The Kanban policy [31] is generally 

applied to repetitive and quasi-continuous productions, 

this policy cannot respond quickly when the demand 

changes. 

This control policy is defined as follows: 
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   (3) 

The number of unsatisfied demands (lost) per unit 

time is denoted by D0(t), and depends on the customer 

demand and the buffer level. Indeed, when the 

customer orders a demand d(t) and the buffer is empty, 

the demand will not be satisfied at all and will be lost. 

Therefore,
 
D0(t) is null if the buffer level is positive 

and is equal to the demand if the buffer is empty. The 

number of unsatisfied demands per unit time is defined 

as follows:  












0)(if)(

0)(if0
)(0

txtd
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tD        (4) 

The number of unsatisfied demands at time t denoted 
by )(tL is given by:  














0)(if0)(

0)(if)()(0

txtL

txtdtD
dt

dL(t)

   (5) 

Remark 2: We defined L(t), because we will need it 

for writing the cost function. Indeed, L(t) is number of 

unsatisfied demands at time t and D0(t) is the number 

of unsatisfied demands (lost) per unit time. 

The number of transported products is equal to the 

number of products outgoing from the buffer at time   

t  (t) and which will arrive to the customer at time t. 

Indeed, the speed of the number of products 

transported is equal to the demand per unit time (d(t)) 

minus the number of the unsatisfied demands per unit 

time (D0(t)). 

The number of products transported at time t is 

defined as follows: 





t

tt

T))dtDtdtg
)(

0 ()(()(


      (6) 

The number of products arriving after the planed 

delivery time at time t is indicated as r(t), and is equal 

to the number of products transported at time t when 

τ(t)> τpl. 

The number at time t of products arriving after the 

planned delivery time (late delivery of products) is 

given by: 

)(])([1)( tgttr pl    

With  
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)(0

)(1
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The cost function C(t), at time t, which is composed 

by the inventory cost, transportation cost, lost sales 

cost and late delivery cost, is given by:  

)()()()()( trctrtgcttLcstxcstC    (8) 
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where:  

cs : unit inventory cost; 

ct : unit transportation cost; 
cs : unit lost sales cost; 

ctr : penalty cost for late delivery per unit product. 

The expected average cost, denoted by J(h) 

depending on h is given by : 









 

T

T
ttCE

T
hJ

0

d)(
1

lim)(  

],0[ Tt  with T the total simulation time   (9) 

3. Application of the IPA Method on the 
Stochastic Fluid Model 

In this section, we turn our attention, to applying the 

IPA method to the stochastic fluid model. The IPA is 

an approach intended to estimate gradients of 

performances metric with respect to some parameters 

of interest. This method consists of observing and 

analyzing two sample paths, one is the nominal sample 
path ( )(tx ), and the other is the perturbed sample path 

( )(tx ) (Fig. 2). We assumed that the optimal 

inventory level is increased by a perturbation, denoted 

by  . In this paper, we consider δ >0 and we evaluate 

the resulting changes in the cost function using 

geometric arguments (similar results could be easily 

obtained for δ <0). The optimal inventory level of the 

perturbed sample path ( )(tx ) is h . 

3.1 Study of Buffers Level Trajectory 

We assumed that the optimal buffer level h is 

increased by a positive perturbation, denoted by δ. 

Indeed, when the buffer becomes full, a lag denoted by 

)(t (with   )(t0 ) begins to take place between 

the nominal and perturbed trajectory and increases 

until it reaches the value of δ.  

The following assumptions are considered: 

 For comparing the both sample paths, the same 

distribution of random variables (times to failure, times 

to repair and customer demands) is used; 

 The maximal production is the same for both 

sample paths, so the number of parts increases in an 

equivalent way. 

The following notations are used: 

)(tx
: The buffer level for the perturbed path; 

)(tu : The production rate at time t for the 

perturbed path; 

)(tg  : The number of transported products at time t 

for the perturbed path; 

)(tD0 : The number of unsatisfied demands per 

unit time for the perturbed trajectory; 

)(tL : The number of unsatisfied demands at time t 

for the perturbed trajectory; 

)(tr
: The number of products arriving after the 

planned delivery time at time t for the perturbed 

trajectory; 

sjt : jth instant for which the buffer on the nominal  
 

 
Fig. 2  Buffer level of the perturbed and nominal paths.  
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path becomes full and causes a lag between the 

disturbed path and the nominal path.; 

sjt : jth instant for which the buffer on the disturbed 

path becomes full; 

vjt : jth instant for which the perturbed trajectory and 

the nominal trajectory merge; 

vjt : is the last instant between sjt and 

vjt  for 

which the buffer becomes empty on the nominal 

trajectory. 

In the following Fig. 2, we give an example. 

Let [0,T] be the finite horizon. In this interval, we 

consider the trajectories of )(tx and )(tx . The 

interval [0,T] is divided into two alternating periods: 

the first when ],[ 
vjsj ttt  and the other when 

],[ )1(  jsvj ttt 
. For these intervals, the perturbed and 

the nominal paths will be analysed and compared. We 

will use these periods in the following lemmas and 

theorems. 

Lemma 1 shows that at instant 

sjt ,

 
the buffer level 

of the perturbed trajectory becomes full and causes a 

lag  )(t  between the nominal and perturbed 

trajectory. We will use this lemma for the 

demonstration of the theorem 1. 

Lemma 1: if 
sjtt   then   )()( sjsj txtx . 

Theorem 1 shows that the buffer level of the 

perturbed path is equal to nominal path plus the 

perturbation when ],,[ 
vjsj ttt these periods 

correspond to the achievement of a buffer full for the 

perturbed path. 

The proofs of following theorems are logically 

similar to which in Refs. [32, 33]. 

Theorem 1: If x = x(0) and ],,[ 
vjsj ttt  then 

)()()( ttxtx    with   )(0 t .  

The following lemma shows that at instant 

vjt ,

 
the 

buffer level of the perturbed trajectory becomes empty 

and annuls the lag between the nominal and perturbed 

trajectory. We will use this lemma in the 

demonstration of Theorem 2.  

Lemma 2: If 
vjtt   then )(0)( 

vjvj txtx  . 

Theorem 2 shows that the buffer level of the nominal 

path and the perturbed path are equal when 
],[ )1(  jsvj ttt 

, these periods correspond to the buffer 

building. 
Theorem 2: If

 
)0()0( xx  , then )()( txtx   

for all ],[ )1(  jsvj ttt 
. 

Theorem 3 shows that the number of materials 

transported of the perturbed path is equal to nominal 

path plus the perturbation when ],[ 
vjvj ttt . 

Theorem 3: If ],[ 
vjvj ttt  and 0td )( then 

)()()( ttgtg   . 

Theorem 4 shows that the number of materials 

transported of the nominal path and of the perturbed 

path is equal when ],/[],0[ 
vjvj ttTt .  

Theorem 4: If ],/[],0[ 
vjvj ttTt  then 

)()( tgtg  . 

Theorem 5 shows that the number of products 

arriving after the planed delivery time (i.e., plt  )( ) 

of the perturbed path is equal to nominal path plus the 

perturbation when ],[ 
vjvj ttt . 

Theorem 5: If ],[ 
vjvj ttt  and d(t) > 0 then 

)(])([1)()( tttrtr pl   . 

Theorem 6 shows that the number of products 

arriving after the planned delivery time of the nominal 

path and of the perturbed path is equal when 

],/[],0[ 
vjvj ttTt .  

Theorem 6: If ],/[],0[ 
vjvj ttTt  then 

)()( trtr 
. 

In what follows, we will determine the IPA 

estimators and will prove their unbiasedness. 

3.2 IPA Estimators  

The expected value of the sample path derivatives 

obtained by simulation is used instead of the derivative 

of the expected cost. Therefore, we need to establish 

the unbiasedness of the gradient estimators. For this, 

we just have to prove that 

dh

hJEd

dh

hJd
E aa )))(((

)
))((

(  for every h in H, 
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where H is the set of possible values of h.  

The average cost of the perturbed trajectory is given 

by:  









 

T

T
ttCE

T
hJ

0

d)(
1

lim)(     (10) 

With  

)()()()()( trctrtLcstgcttxcstC    (11) 

The sampled estimation for the expected average 

cost of the nominal path is given by:  









 

T

a dttCE
T

hJ
0

)(
1

)(        (12) 

The sampled estimation for the expected average 

cost of the perturbed path is given by:  









 

T

a dttCE
T

hJ
0

)(
1

)(         (13) 

We determine the IPA estimators of the cost 

function by computing the difference between the 

perturbed average cost and the nominal average cost. 

The difference between the perturbed average cost 

and the nominal average cost is given by: 

]))()(([
1

)()(
0
 
T

aa dttCtCE
T

hJhJ    

 )()( hJhJ aa   

 
T

tgtgcttxtxcsE
T 0
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])))()(())()(( dttrtrctrtLtLcs    

We assume that in the interval [0,T], we have m 

intervals ],[ 
vjsj tt . 

For  
T

dttxtxcs
0

,))()((  we have 

  )()( txtx  when ],[ 
vjsj ttt  and 

)()( txtx  , when ],[ )1(  jsvj ttt   (Theorems 1 and 

2) then we have: 

 
T

dttxtxcs
0
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T

dttgtgct
0

)()(  we have 

  )()( tgtg  when ],[ 
vjvj ttt  (Theorem 3) 

and we have )()( tgtg  when ],/[],0[ 
vjvj ttTt  

(Theorem 4), then we have: 

 
T

dttgtgct
0

))()(( 
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For ,))()((
0
 
T

dttLtLcs   when t  

],/[],0[ 
vjvj ttT , 

the demands are satisfied for the two 

types of trajectories, then we have )()( tLtL  . When 

],[ 
vjvj ttt  , we have, the number of satisfied products 

is equal to the number of products in the buffer and 

then we have   )()( txtx . Contrariwise, the 

difference between the number of unsatisfied products 

for the perturbed trajectory and that for the nominal 

trajectory is equal to the opposed for the case of 
satisfied products, thus   )()( tLtL : 

 
T

dttLtLcs
0

))()((   

  


























  











mj

j

t

t

mj

j

t

t

vj

vj

vj

vj

dtcsdttLtLcs
11

)()()(



  

For ,))()((
0
 
T

dttrtrctr 
 we have 

)(])([1)()( tttrtr pl    (Theorem 5) 

then  


T

dttrtrctr
0

))()((   
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T

pl dtttctr
0

)()(1   and according to 

Theorems 5 and 6: 
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The gradients of the cost function are defined as 

follow: 





 


  ctr
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with 
T

T
hG 1)(  , 

T

T
hW 2)(   and 

T

T
hS 3)(  . 

For making these estimators useful in practice, the 

unbiasedness should be proved. 

Theorem 7: The gradient estimator of the average 

cost is unbiased. 

Before presenting our numerical results, we present 

an algorithm (IPA estimation algorithm) for 

determining the IPA estimators which will be used 

thereafter in an optimisation algorithm in Table 1. 

Let Z, Q and F be the IPA estimators (parameters) 

which will be used in the following algorithm, with 

T

Z
hG )('

 
, 

T

Q
hW )(' and 

T

F
hS )(' . 

For determining the optimal buffer level, we use an 

optimisation algorithm, which is bisection algorithm. 

The choice of this type of algorithm is explained by 

the fact that this algorithm is widely used for 

optimising a convex function (cost function) with the 

use of a gradient method such as the IPA method. 

Furthermore, in the literature this type of algorithm is 

often used in the case of a single decision variable, 

which is our case. Indeed, our optimisation algorithm 

computes at every step the gradients estimation of the 

cost function by using the IPA estimation algorithm, 

which determines the estimators R and S. According 

to the sign of the gradients estimation, the proposed 

algorithm determines the new values of the interval 

bounds (new sub-interval) and repeats all steps until 

the difference between the upper and lower bound 

becomes very small, thus the value of the optimal 

buffer level is found. In what follows, we present our 

optimisation algorithm in Table 2. 
 

 

Table 1  IPA estimation algorithm. 

Beginning Z = 0, Q = 0, F = 0, t = 0, q = 0, l = 0, w = 0  

Do 

If 

sjtt   then q = 


sjt . 

Advance t. 

If vjtt  then l = vjt . 

Advance t. 

If 

vjtt   then w = 


vjt . 

Z = Z+ (w  q). 

Q = Q + (w  l). 

If plvjt  )(  then F = F + (w  l). 

q = l = w = 0. 

Advance t. 

While t < T 

End  
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Table 2  Optimisation algorithm. 

The optimisation algorithm allows us to determine the optimal level buffer h and is given by: 

Beginning 

hmin = 0 and hmax = MTTR.Dmoy(t), with Dmoy(t) is the average demand. Where MTBF and MTTR are, respectively, mean time between 

failure and mean time to repair. 

Do 

Step 1: h= hmax; 

Step 2: Determine the estimators Z, Q and F which correspond to h = hmax by using the IPA estimation algorithm; 

Step 3: Determine the gradients estimation of the cost function )(hV  by using the estimators R, and S, with 

TctrFcsctQcsZhV /))(()(   ; 

Step 4: If 0hV )(  then hmin = hmax and hmax = 2*hmax return to Step 1, else go to Step 5;  

Step 5: hm = (hmax + hmin)/2 then determine V(hm) ≤ 0; 

Step 6: If 0hV m )(  then hmin = hm else hmax = hm; 

Step 7: If hmax  hmin > ε return to Step 1, else go to Step 8; 

Step 8: the optimal buffer is equal to hm. 

End. 
 

4. Numerical Results 

In this section, we use the IPA estimators in an 

optimization algorithm, which allows us to determine 

the value of h. Such as the cost function depends on the 

value of the unit costs cs , ct , cs and ctr, the value 

of h which minimizes this cost function will certainly 

also depend on these unit costs. We are interested in 

this study to the value of cs  and ctr. Therefore, we 
fix the values of cs , ct and we vary the values of 

cs and ctr. 

The following parameters are used for the simulation:  

U = 2 products/time unit 

The average of demands d(t) over the interval  T,0  

is 0.8 products/time unit. For the demand event the 

boundaries of the uniform distribution are 1 (minimum) 

and 4 (maximum); 

The total simulation time is equal to T = 10E + 07 

time units; 

The times to failure or repair are given by 

exponential distribution, the mean time between 

failures MTBF is equal to 2.3 and the mean time to 

repair MTTR is equal to 1.1; 

The planned delivery time τpl is equal to 2, the 

delivery time τ(t) is generated according to a truncated 

normal distribution, the normal distribution gives same 

value out the interval [1, 3], the truncated normal 

distribution gives bounded value between 1 and 3. 

Simulation results are presented in the following 

table to show the impact of the unit costs cs  and ctr 

on the value of h. Furthermore, to evaluate the 

simulation results we simulated the stochastic fluid 

model for an example of the unit costs values ( cs , ct , 
cs and ctr).  

In the following, in Tables 3, we present simulation 

examples of the stochastic fluid model according to the 

unit costs values: 

Example (cs = 5 and ct = 10) 

In this example, we see that the more the unit cost 

ctr becomes important comparing to cs ; the more 

the value of h decreases. Turki et al. [31] showed that 

in the case of constant delivery time, cs  has the 

most important impact on the value of h comparing to 

ct and cs, and when cs  increases the optimal buffer 

level h increases too. In this paper, we considered a 

stochastic delivery time, which generates late delivery 

cost. Therefore, when when ctr becomes important 

comparing to cs  normally the late delivery cost 

becomes  important  comparing to  lost sale cost.  Thus, 
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Table 3  Impact of unit costs (
cs  and ctr ) on h (Case 1).  

cs- ctr h 

50 1 4.358 

50 10 3.885 

50 20 3.183 

50 30 2.852 

50 40 1.788 

50 50 1.253 

40 1 3.741 

40 10 2.924 

40 20 2.223 

40 30 2.752 

40 40 1.491 

40 50 0.818 

30 1 3.081 

30 10 2.481 

30 20 1.875 

30 30 1.104 

30 40 0.785 

30 50 0.391 

20 1 2.252 

20 10 1.634 

20 20 1.092 

20 30 0.645 

20 40 0.204 

20 50 0.092 
 

the impact of cs  on the value of h becomes less 

important in the presence of stochastic delivery time. 

Then the value of h, which minimizes the total cost, of 

course decreases as the unit cost ctr increases. 

However, these numerical results, which are obtained 

by a simulation based on IPA are computed in small 

simulation time. For example, a simulation based on 

bisection technique takes six hours for determining the 

value of the optimal buffer level. Besides, the 

simulation based on IPA takes three minutes for 

determining the value of the optimal buffer level. Then, 

the advantage of IPA method is that the simulation 

based on IPA allows reducing the simulation time 

comparing to classical simulation methods. 

5. Conclusions 

In this paper, a manufacturing supply chain system 

composed by a single-product machine, a buffer and a 

stochastic demand is considered. The demand is lost 

when it is unsatisfied. The delivery time is random. 

The times to failure and times to repair are random 

variables with exponential distribution. A hedging 

point policy taken into account the stochastic delivery 

time, machine failures and random demands is defined. 

A stochastic fluid model with explicit modeling of the 

planned delivery time between the producer and the 

customer is proposed. The IPA method is applied; the 

stochastic fluid model and the buffer level trajectories 

are studied and analyzed. Two alternating and 

repetitive periods appear. The first period is when the 

perturbed and nominal paths are equal: the buffer is 

build. The second period is when the perturbed path is 

higher than the nominal path: the buffer full is reached. 

The infinitesimal perturbation analysis estimators are 

determined and shown to be unbiased. These 

estimators are then implemented in an optimization 

algorithm for determining the optimal buffer level. The 

advantage of IPA method is that the simulation based 

on IPA allows reducing the simulation time comparing 

to classical simulation methods. The impact of the unit 

costs cs- and ctr on the value of h is studied. Indeed, 

when the value of ctr increases, h decreases. 

For future research, we will study the impact of the 

planned delivery time on h. Also, we will consider a 

more complex system with multi-stage and 

multi-product machines. We will consider also more 

than one customer with random demands for each one. 
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