

Photodegradation of Cinnamic Acid Solution in the Presence of Various Oxidizing Agents on TiO₂ and Fe-TiO₂ Catalysts

Ha Cam Anh¹, Luu Cam Loc^{1, 2*}, Nguyen Tri², Nguyen Phung Anh², Nguyen Thi Nga Tot¹, Nguyen Thi Thuy Van² and Hoang Tien Cuong²

1. University of Technology, Vietnam National University Ho Chi Minh City, 268 Ly Thuong Kiet Str., Ho Chi Minh City 70100, Vietnam

2. Institute of Chemical Technology, Vietnam Academy of Science and Technology, 01 Mac Dinh Chi Str., Ho Chi Minh City 70100, Vietnam

Abstract: In this paper, TiO_2 and Fe-doped TiO_2 had been prepared by the sol-gel method. Physico-chemical characteristics of the catalysts were determined by the methods of BET Adsorption, XRD, FT-IR, and UV-Vis spectroscopies. Experimental results showed that the The modification of TiO_2 catalyst with Fe led to reducing the crystallite size and PZC, and extending the spectrum of photon absorption to the visible region. The activity of obtained catalysts for photodegradation of cinnamic acid (CA) solution in the presence of various oxidizing agents (O_2 , O_3 and H_2O_2) was investigated and the optimum reaction conditions were identified. It follows that the addition of Fe additive is able to reduce the optimal catalyst concentration 3-5 times and increase the catalytic activity. It was found that O_3 and H_2O_2 agents showed the higher efficiency for cinnamic acid photodecomposition than usual O_2 . In optimum conditions, after 90 minutes reaction, the conversion of cinnamic acid in the solution achieved 58.5, 77.7 and 83.1% on TiO_2 and 85.7, 82.8 and 89.4% on Fe-TiO₂ in the presence of O_2 , O_3 and H_2O_2 respectively.

Key words: Photodegradation, cinnamic acid, oxidizing agents, TiO₂ and Fe-TiO₂.

1. Introduction

Photocatalysis is an advanced process having many useful applications, particularly in environment cleanup [1]. Intrinsically, photocatalysis is refers to the reaction accelerated by light in the presence of catalyst, normally a semiconductor. In fact, TiO₂ is the best choice for commercial catalyst because of its high photocatalytic activity under UV irradiation, chemical and thermal stability, non-toxicity, reasonable band gap energy, easily available, and low cost. Up to now, compared to the other photocatalysts, TiO₂ has better performance and is preferable.

 TiO_2 in anatase phase, whose energy exceeds the band gap of 3.2 eV, could be activated under

ultraviolet light ($\lambda < 387$ nm). However, it is broadly known that only 3-5 % of sunlight is UV-irradiation, capable to activate TiO₂ becoming a photocatalyst. Therefore, widening the light absorbing zone of TiO₂-based photocatalyst into visible range is really necessary. In addition, e^{-}/h^{+} recombination is a practical problem related to reduce quantum yield and need to be considered carefully. There are several ways to modify TiO2 including metal-ion implanted TiO₂ (using transition metals: Cu, Co, Cr, Mo, V, W, Fe, Ag, Au and Pt), composite TiO₂ with carbon nanotubes, dye sensitizers or other photo-sensitive semiconductors (e.g. CdS, ZnO), non-metal and metal doping [2]. As it follows from our previous investigation [3], Fe-doped TiO₂ has been considered as an effective dopant for photoactivity enhancement. Photocatalysts of pure and Fe-modified TiO₂ with a

^{*}**Corresponding author:** Luu Cam Loc, Dr., Sci., professor, research fields: petroleum chemistry, catalysis, nanomaterials, kinetics and mechanism of catalytic processes.

particle size of about 20-30 nm were prepared by the sol-gel method. Doping TiO₂ by iron enabled red shift the photon absorbing zone of TiO₂ (with λ up to 464 nm) and reduced the value of the band gap energy down to 2.67 eV [3]. Fe-modified TiO₂ catalysts showed advantages over the pure TiO₂ sample when operating in the photooxidation of p-xylene in gas phase under visible light radiation. The utilization of UV and visible light in a combined mode of irradiation for the catalyst Fe-doped TiO₂ increased its activity and degradation efficiency in the p-xylene photooxidation by up to two to three times with considerable stability [3].

The photodegradation of numerous organic compounds were investigated on TiO₂, including pesticides and phenolic contaminants in wastewaters such phosphamidon diphenamid [4-8], as indole-3-acetic acid and indole-3-butyric acid [9], dimethoate [10], propham, propachlor and tebuthiuron [11], 4-chlorophenol and 2,6-dichlorophenol [12]); emerging contaminants in municipal wastewater (i.e. acetaminophen, antipyrine, atrazine, carbamazepine, diclofenac, flumequine, hydroxybiphenyl, ibuprofen, isoproturon, ketorolac, ofloxacin, progesterone, sulfamethoxazole and triclosan) [13, 14], dyes (reactive red 4, methylene blue [15-17], reactive red 222 [18], crystal violet [19], remazol black [16], methyl orange and congo red [20]), and herbicides (picloram [21] and imazethapyr [22]), etc.

Cinnamic acid $(C_9H_8O_2)$ – an unsaturated carboxylic acid is one of the phenolic compounds commonly present in oil mill vegetation and washing wastewaters, where its concentration reaches up to 106 mg/L [23]. Many works have reported the degradation of this acid by several advanced oxidation processes (AOPs) including H_2O_2 [24], Fenton processes (i.e. Cu^{2+}/H_2O_2 [24], Fe^{2+}/H_2O_2 [24, 25] or Fe^{2+}/H_2O_2 under UV light [25]). However, much less is known about the treatment of cinnamic acid solutions by photocatalytic systems TiO₂-UV.

Therefore, the scope of this work is to investigate

the effect of various oxidizing agents (i.e. O_2 , O_3 and H_2O_2) on the removal efficiency of cinnamic acid (CA) in model effluents on TiO_2 and Fe-TiO₂ photocatalysts.

2. Materials

2.1. Preparation of Catalysts

Pure TiO₂ catalyst was prepared by the sol-gel method as follows: 15 mL of tetraisopropyl orthotitanate Ti(OC₃H₇)₄ (TTIP) was added to an ethanol-HNO₃ mixture with a pH of about 3-4 and stirred for 10 minutes to obtain a transparent solution. The solution was added drop wise to 10 mL of deionized water, stirred at room temperature for 2 hours to form a highly viscous solution. The solution was standing for 24 hours to obtain a transparent soft gel. The sample was dried in three stages at room temperature, 80 °C and 100 °C for 2 hours at every stage. Finally, the calcination and crystallization were carried out at 450 °C for 2 hours in an air flow and then the powder TiO₂ was obtained and is denoted by TiO₂.

TiO₂ catalyst doped 0.1 mol% Fe₂O₃ was prepared by the sol-gel method according to above procedure, with a difference 10 mL of deionized water added drop wise was replaced by 10 mL Fe(NO₃)₃ solution in deionic water. The powder Fe-doped TiO₂ was obtained and denoted as Fe-TiO₂.

2.2. Physico-Chemical Characteristics Analyses

Physico-chemical characteristics of catalysts were investigated by various methods, including BET surface areas and pore volumes (N₂ physisorption), X-ray powder diffraction analysis (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), and UV-Vis absorption spectroscopy. The point of zero charge (PZC) of obtained catalysts was determined by acid-base titration method.

2.3. Photocatalytic Activity

Experiments for photocatalytic degradation of cinnamic acid in the presence of various oxidizing agents (O₂, O₃ and H₂O₂) were carried out using the batch photocatalytic system illustrated in Fig. 1. Photocatalytic reactor is the inner quartz double-wall jacket with inlet and outlet for the water circulation to maintain the temperature of the reaction mixture. Reactor is designed with the volume of reaction solution of 250 mL and radium ralutec 9W/78 UVA G23 lamp (36 lamps, $\lambda \approx 350$ -400 nm, Capacity each lamp 0.160 mW). The photo-reactor was isolated by using a thick plastic black cover. In addition, the reaction mixture is mixed by magnetic stirrer.

In all experiments, reaction solution volume 250 ml, cinnamic acid concentration 50 mg/L and stirring 250 rpm were fixed. Influences of catalyst concentration and operation parameters (i.e. initial solution pH, temperature of reaction solution and dissolved oxygen (DO) or flow rate of O_3 supply or H_2O_2 concentration) on the photoactivity of catalysts were investigated. The catalysts were separated by filtration (syringe filter, pore size 0.22 µm, sarttorius NY) from the aqueous solutions prior to analyzing the

samples. The concentrations of cinnamic acid (CA) in the solution were determined by UV-visible spectrophotometer (UV-1800, Shimadzu, Japan) at $\lambda_{max} = 272$ nm.

3. Results and Discussion

3.1 Physico-Chemical Characteristics of Catalysts

The XRD spectra as well as the Raman spectra of catalysts showed that TiO₂ only existed in anatase phase. On XRD spectra of both catalysts (Fig. 2), characteristic peaks of TiO₂ anatase phase appeared at $2\theta = 25.3^{\circ}$, 37.8° ; 48.1° ; 55.1° and 62.7° with the strongest intensity at $2\theta = 25.3^{\circ}$. The characteristic peaks of rutile phase $(2\theta = 26.9^{\circ}, 35.7^{\circ}, 40.8^{\circ}, 53.7^{\circ})$ 55.8° and 63.5°) [26] almost did not appear. According to authors [27], Fe-TiO₂ catalyst only converted anatase to rutile phase when Fe concentration was more than 0.1 mol%. The intensity of the anatase peaks in Fe-doped TiO_2 is higher than that of pure TiO₂ that indicated the crystallite of Fe-doped TiO₂ is better than TiO₂ catalyst. The authors [28] also obtained the same results and proposed the incorporated Fe into TiO₂ did not change the crystal structure of TiO_2 due to probably Ti^{4+} ions in the crystal framework of TiO₂ was replaced by Fe³⁺ ions.

I - Liquid cooling system; II - UV-LED lamps controller (PC adapter); III - Magnetic stirrer; IV - Cooling water tank; V - Circulation pump; VI - Air pump; VII - Flow meter; VIII - ; IX - Thermometer; X - Reactor; 1, 2 - Liquid coolant pipeline; 3, 4 - Water pipeline; 5- Air/ozone pipeline.

Fig. 2 $\,$ XRD spectra of $TiO_2\left(a\right)$ and Fe-TiO_2\left(b\right) catalysts.

On the Raman spectra of the catalysts (Fig. 3) appeared four characteristic peaks for anatase phase of TiO₂ at 153, 395, 520 and 643 cm⁻¹. In which, E_g peaks at 153 cm⁻¹ and 643 cm⁻¹, B_{1g} at 395 cm⁻¹ and A_{1g} at 520 cm⁻¹ were observed. E_g peaks are formed mainly by fluctuating the symmetric stretch of O-Ti-O in TiO₂, B_{1g} peaks are formed by bending oscillation of the O-Ti-O and A_{1g} are formed by bending the asymmetric oscillation of O-Ti-O [29]. No characteristic peaks of Fe₂O₃ or Fe₃O₄ was observed that is consistent with the results of the XRD analysis. It indicated that when Fe ions were incorporated into TiO₂ crystal structure, species -TiO-Fe-O-Ti-O- type were formed [30].

It can be found from TEM images (Fig. 4) that both samples consist of pseudo spherical particles, but the particle size of TiO₂-Fe catalyst was smaller and more uniform than TiO₂. Nanoparticle size of TiO₂ and Fe-TiO₂ was about 25 nm and 9.2 nm, respectively. As such, modification TiO₂ by Fe has significantly reduced the size of catalyst particles, leading to an increase in surface area of catalyst from 43.6 m²/g to 90.5 m²/g.

The FT-IR spectra (Fig. 5) of both catalysts showed the characteristic peaks of basic OH-groups on TiO₂ surface at ~3,350 cm⁻¹ and adsorbed water molecules (1,630 cm⁻¹). The peaks at 400-700 cm⁻¹ may be attributed to the vibration of Ti-O-Ti and Ti-O or Fe-O. In comparison with pure TiO₂, Fe-TiO₂ sample showed a higher intensity of the peak corresponding to OH-groups on catalyst surface probably due to its higher surface area, leading to more water adsorbed on the catalyst surface to generate OH-groups.

UV-vis diffuse reflectance spectra of catalysts (Fig. 6)

Fig. 3 Raman spectra of TiO_2 (a) and $Fe-TiO_2$ (b) catalysts.

Fig. 4 TEM images of TiO₂ (a) and Fe-TiO₂ (b) catalysts.

Fig. 5 FT-IR spectra of TiO_2 (full line)) and Fe-TiO₂ (dashed line) catalysts.

Fig. 6 UV–vis diffuse reflectance spectra of TiO_2 (full line) and Fe-TiO₂ (dashed line) catalysts.

Fig. 7 Pre-adsorption ($C_{cat} = 0.75 \text{ g/L}$) and photolysis (UV, $\lambda = 365 \text{ nm}$) of cinnamic acid solution on TiO₂ catalyst ($C_{CA} = 50 \text{ mg/L}$, pH = 7, T = 25 °C, DO = 7,6 mg/L).

indicated that iron oxide doped into TiO_2 enables to extend the region of the photon absorption zone of TiO_2 towards the visible waves (from $\lambda = 410$ nm to 437 nm) as well as to reduce its band gap energy from 3.03 eV down to 2.87 eV. It is also noticeable that pure TiO_2 catalyst prepared by the sol-gel method has the lower band gap energy than pure TiO_2 anatase and TiO₂-P25 (3.2 eV) [31].

3.2 The Pre-adsorption and Photolysis of Cinnamic Acid Solution

According to Fig. 7, after the pre-adsorption in dark or photolysis (no catalyst, UV lighting) process, CA concentration in the solution stayed nearly unchanged. No adsorption of CA during 90 minutes adsorption process was observed. The effect of UV irradiation alone on the degradation of CA is also negligible.

3.3 Activity of Catalysts in Photocatalytic Degradation of Cinnamic Acid

3.3.1 Photocatalytic Degradation of CA Solution in Presence of Oxygen

According to our previous investigation, the optimal conditions of photocatalytic degradation CA solution in presence of oxygen on pure TiO₂ prepared by hydrothermal method (TiO₂(H)) were determined as follows reaction temperature 25 °C, initial solution pH = 7, DO = 6.4 mg/L and catalyst concentration 0.75 g/L.

Fig. 8 showed that the activity of TiO₂ catalyst prepared by the sol-gel method (TiO₂(S)) was higher than that of one prepared by the hydrothermal method (TiO₂(H)). This could be explained that TiO₂(S) sample existed in the smaller and more uniform particle size (20-25 nm compare to 30-40 nm) and characterized by the lower band gap energy in comparison with TiO₂(H) (Eg = 3.14 eV). After 90

Fig. 8 The conversion of CA solutions on pure TiO_2 catalyst prepared by hydrothermal $(TiO_2(H))$ and sol-gel method $(TiO_2(S))$ in presence of O_2 .

minutes reaction, CA conversion on $TiO_2(S)$ and $TiO_2(H)$ catalysts reached 58.5% and 48.5%, respectively.

On Fe-TiO₂ catalyst, conversion of cinnamic acid decreased with increasing of pH solution from 3.8 to 7 was observed from Fig. 9a. At pH of 3.8 and 5, the 90 minutes conversion of CA (X_{90}) reached 80.4% and 75.9%, respectively, meanwhile at pH = 7, it reduced to 17%.

The variation of CA conversion with catalyst concentration has extreme character; the maximum CA conversion after 90 minutes reaction of 80.4% was observed at 0.75 g/L (Fig. 9b).

Fig. 9c showed that CA conversion almost did not change when the dissolved oxygen increased from 5.4 to 6.4 mg/L, the 90 minutes conversion of CA reached approximately 85%. However, when the dissolved oxygen increased up to 7.0 mg/L, CA conversion

reduced. Dissolved oxygen plays an important role in TiO_2 photocatalytic reaction to assure sufficient electron scavengers present to trap the excited conduction-band electron from the recombination [32]. However, too intensive oxygen flow led to appearance of foams, that on one hand interferes with the absorption of UV light by reaction solution, on the other hand a part of catalyst particles move to the surface of the solution with air bubbles, that reduced the amount of catalyst in solution, in the result efficient handling of CA reduced [33].

Fig. 9d showed that with increasing the reaction temperature CA conversion increased little. The value of X_{90} reached 80, 85 and 87% corresponding to the reaction temperature 25, 30 and 35 °C. Therefore, the ambient temperature of 30 °C was chosen for the CA photodegradation with oxygen agent on Fe-TiO₂ catalyst.

Fig. 9 The conversion of CA solutions on Fe-TiO₂ catalyst in presence of O_2 .

3.3.2 Photocatalytic Degradation of CA Solution in Presence of Ozone

Figs. 10 and 11 showed that compared to oxygen oxidant ozone had not only significantly reduced the concentration of used catalysts but also increased CA conversion. On TiO₂ catalyst, CA conversion rise from 59% to 82% when the flow rate of O₃ increased from 0.1 to 0.5 L/min (seen in Fig. 10(a)), but if ozone flow was still increased to 0.7 L/min, a decrease of X₉₀ down to ~79% was observed. This may be due to ozone supporting the production of O₂ and OH* radicals (Eqs. (1)-(4)) [34]. However, excess O₃ reacts

with OH* radicals to reduce the amount of radicals (Eq. 5) [35], leading to drop CA conversion.

$$TiO_2 + h\nu \rightarrow e^- + h^+ \tag{1}$$

$$O_3 + e^- \to O_3^{*-}$$
 (2)

$$O_3^{*-} + H^+ \to HO_3^*$$
 (3)

$$\mathrm{HO}_{3}^{*} \to \mathrm{O}_{2} + \mathrm{OH}^{*} \tag{4}$$

$$OH^* + O_3 \rightarrow O_2 + HOO^*$$
 (5)

 $Fe-TiO_2$ catalyst exhibited the higher photoactivity than TiO_2 and it reached the maximum CA conversion

Fig. 10 The conversion of CA solutions on TiO₂ catalyst in presence of ozone: (a) effect of ozone flow ($C_{cat} = 0.75 \text{ g/L}$, pH = 7, T = 25 °C), (b) effect of catalyst concentration ($Q_{ozone} = 0.3 \text{ L/min}$, pH = 7, T = 25 °C), (c) Effect of initial pH solution ($C_{cat} = 0.75 \text{ g/L}$, $Q_{ozone} = 0.3 \text{ L/min}$, T = 25 °C) and (d) effect of reaction temperature ($C_{cat} = 0.75 \text{ g/L}$, $Q_{ozone} = 0.3 \text{ L/min}$, pH = 7).

Fig. 11 The conversion of CA solutions on Fe-TiO₂ catalyst in presence of ozone: (a) effect of ozone flow ($C_{cat} = 0.75 \text{ g/L}$, pH = 7, T = 25 °C), (b) effect of catalyst concentration ($Q_{ozone} = 0.3 \text{ L/min}$, pH = 7, T = 25 °C), (c) effect of initial pH solution ($C_{cat} = 0.75 \text{ g/L}$, $Q_{ozone} = 0.3 \text{ L/min}$, T = 25 °C) and (d) effect of reaction temperature ($C_{cat} = 0.1 \text{ g/L}$, $Q_{ozone} = 0.3 \text{ L/min}$, pH = 5).

about 85% at as low O3 flow rate as 0.3 L/min (Fig. 11a). This may due to the facts that the energy level for Fe^{3+}/Fe^{4+} is above the valence band edge of TiO_2 and the energy level for Fe^{3+}/Fe^{2+} is below the conduction band edge of TiO₂ [36], Fe³⁺ ions acting as both electrons and holes traps can turn into Fe²⁺ and Fe⁴⁺ ions by trapping photogenerated electrons and holes, respectively. Fe²⁺ ions can be oxided to Fe³⁺ ions by transferring electrons to absorbed O₂ on the surface of TiO₂ or a neighboring surface Ti⁴⁺ ions [37]. Meanwhile, the adsorbed O_2 is reduced to O^{2-} , which can further degrade CA. Similarly, Fe⁴⁺ ions also are reduced to Fe³⁺ ions by releasing electrons, while surface hydroxyl group translates into OH* radical. As a result, the introduction of appropriate Fe³⁺ ions is responsible for the reduction of the photogenerated hole-electron recombination rate and favors the improvement of photocatalytic activity. However, Fe³⁺ ion can act as the recombination centers for the photogenerated electrons and holes when Fe³⁺ ion concentration becomes high, lead to the decrease of photocatalytic activity. In our case the optimal doping concentration is 0.1%. Above that concentration, Fe^{3+} ion steadily become recombination centers and the photocatalytic activity gradually decreases [38].

With increasing catalysts concentration, CA conversion increased strongly on pure TiO_2 (Fig. 10b), meanwhile it just did slightly on Fe doped-TiO₂ (Fig. 11b). Thereby, it reducing significantly the required concentration of catalyst, thanks to the reduction of the particle size and the increase of specific surface area, moreover, the appearance Fe³⁺ ions motived the formation of radicals O²⁻, HOO* and OH*, leading to intensify the activity of TiO₂-Fe catalyst.

Like the case of using oxygen as oxidant in this case on pure TiO_2 the CA conversion at pH = 7 was higher than that at pH = 5 and 9 (Fig. 10c), meanwhile, on Fe – doped TiO₂, the conversion of CA is highest at acidic solution pH = 5 (Fig. 11c) were observed. Thus, doped Fe to TiO_2 not only increases

the photocatalytic activity, but also alters the value of optimal initial pH of solution from neutral to acidic. This may due with the point of zero charge (PZC) of obtained TiO_2 and Fe-TiO₂ was found of ~7.36 and 4.87 respectively. According to reports [39-41] the point of zero charge of TiO_2 is the range of 4.5-7.0. At PZC point the interaction between the catalyst particles and CA solution is minimal due to the absence of any electrostatic force. When solution pH was below PZC, the catalyst surface of TiO₂ becomes positively charged (i.e. $TiOH + H^+ \leftrightarrow TiOH_2^+$) and gradually exerted an electrostatic attraction force towards the negatively charged compounds. Such polar attractions between TiO₂ and charged anionic organic compounds can intensify the adsorption onto the photon activated TiO₂ surface for subsequent photocatalytic reactions [42]. At solution pH > PZC, the catalyst surface will be negatively charged (i.e. $TiOH + OH^- \leftrightarrow TiO^- + H_2O$) and repulse the anionic compounds in water. Different pH will affect the surface charge density of TiO₂ catalyst [43].

Fe-TiO₂ catalyst favorable working in an acid environment can also cause it having higher activity than pure TiO₂. Because in acidic solution the quantity of H⁺ ions is much higher than that one with pH = 7, H⁺ ions should be able to combine with O²⁻ radicals to generate HOO* radicals (Eqs. (6) and (7)) [44].

$$\operatorname{TiO}_{2}(e^{-}) + \operatorname{O}_{2} \to \operatorname{O}^{2^{-}} + \operatorname{TiO}_{2}$$

$$\operatorname{O}^{2^{-}} + \operatorname{H}^{+} \to \operatorname{HOO}^{*}$$

$$(6)$$

$$(7)$$

Moreover, the pK_a of CA is 4.4 [45], lower pH is consistent for the its photodegradation.

3.3.3 Photocatalytic Degradation of CA Solution in Presence of H_2O_2 .

The influences of condition the CA conversion after 90 minutes reaction on both catalysts in the presence of H_2O_2 were shown in Figs. 12 and 13.

The optimal conditions for CA photodegradation on both catalysts with various oxidizing agents are summarized in Table 1.

Figs. 12, 13 and Table 1 showed that on pure TiO_2 catalyst in comparison with other oxidants (O_2 , O_3), H_2O_2

Photodegradation of Cinnamic Acid Solution in the Presence of

Fig. 12 The conversion of CA solutions on TiO₂ catalyst in presence of H_2O_2 : (a) effect of H_2O_2 concentration ($C_{cat} = 0.75 \text{ g/L}$, pH = 7, T = 25 °C), (b) effect of catalyst concentration ($H_2O_2 = 1\%$, pH = 5, T = 25 °C), (c) effect of initial pH solution ($C_{cat} = 0.75 \text{ g/L}$, $H_2O_2 = 1\%$, T = 25 °C) and (d) effect of temperature reaction ($C_{cat} = 0.75 \text{ g/L}$, $H_2O_2 = 1\%$, pH = 5).

Fig. 13 The conversion of CA solutions on Fe-TiO₂ catalyst in presence of H_2O_2 : (a) effect of H_2O_2 concentration ($C_{cat} = 0.75$ g/L, pH = 7, T = 25 °C), (b) effect of catalyst concentration ($H_2O_2 = 0.5\%$, pH = 7, T = 25 °C), (c) effect of initial pH solution ($C_{cat} = 0.1$ g/L, $H_2O_2 = 0.5\%$, T = 25 °C) and (d) effect of temperature reaction ($C_{cat} = 0.1$ g/L, $H_2O_2 = 0.5\%$, pH = 5).

Table 1	The optimal conditions for	CA photodegradation	on TiO ₂ - based	l catalysts using va	arious oxidizing agents.
---------	----------------------------	---------------------	-----------------------------	----------------------	--------------------------

Catalyst	Oxidizing agent	Temperature (°C)	Catalyst concentration (g/L)	Value of Oxidizing agent	PH solution	Conversion after 90 minutes (%)
	O ₂	25	0.75	6.4 mg/L	7	58.5
TiO ₂	O ₃	25	0.75	0.3 L/min	7	77.7
	H_2O_2	25	0.50	1 %	5	83.1
	O ₂	30	0.75	5.4 mg/L	3.8	84.8
Fe-TiO ₂	O ₃	25	0.1	0.3 L/min	5	89.5
	H_2O_2	30	0.1	0.5 %	5	82.9

gave higher CA conversion and required lower catalyst concentration. This can be explained by that H_2O_2 creating double OH* radicals (Eqs. (8) and (9)) [46].

$$e^- + H_2O_2 \rightarrow OH^* + OH^-$$
 (8)

$$h^{+} + HO_{2} \rightarrow OH^{*} + H^{+}$$
(9)

Figs. 12 and 13 showed that at the optimal reaction conditions with the same oxidizing agent H₂O₂, to achieve the same CA conversion (~83%) the concentration of catalyst and H₂O₂ in the case of using Fe-TiO₂ were much lower than those in case of using pure TiO₂ catalyst (seen in Table 1). The simultaneous presence of Fe³⁺ ions in the catalyst and H₂O₂ in reaction solution creating favorable conditions to increase the production of OH* radicals by Fenton reaction (Eq. (10)) [46], but when concentration of Fe²⁺ ions was too much the amount of radical OH* reduced in the result of reaction (11) [47].

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^* + OH^-$$
 (10)

$$Fe^{2+} + OH^* \rightarrow Fe^{3+} + OH^-$$
(11)

Overall, the doping TiO_2 by Fe leads to reduce the needed concentration of catalyst and oxidants, increasing CA conversion and allowing reactions proceed in acidic environment, the natural environment of the solution CA. In the photodegradation of CA, the absorption of CA on surface catalysts is medium.

4. Conclusions

Doping Fe to TiO_2 causes the particle size reduction, red shift the photon absorbing zone of TiO_2 and reduce its band gap energy from 3.03 eV to 2.87 eV that increased the photoactivity of Fe-TiO₂ catalyst. Using Fe-doped TiO₂ catalyst is able to reduce the optimal catalyst concentration 3-5 times, reduce oxidant concentration, increase catalytic activity and allows reaction process in acidic environment.

 O_3 and H_2O_2 agents showed higher efficiency for cinnamic acid photodecomposition than usual O_2 under UV-A light. In optimum conditions, after 90 minutes reaction, the conversion of cinnamic acid achieved 59-83% on TiO_2 and on Fe-TiO₂ the CA conversion in reaction with all three oxidizing agents (O₂, O₃ and H₂O₂) reached nearly 90%.

The results contributed to emphasize that pure TiO_2 and Fe doped TiO_2 catalysts prepared by sol-gel method have the great potential in photodecomposition of ring compounds and recalcitrant surfactants.

Acknowledgements

This work was supported by the Ho Chi Minh City University of Technology, Vietnam National University-Ho Chi Minh City (VNU-HCM) under the grant "Investigation of photo-degradation of phenolic compounds in water using TiO₂ catalyst" and grand PCATDES 309846 of Seventh Framework Programme- European Commission.

References

- Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., and Anpo, M. 2014. "Understanding TiO₂ Photocatalysis: Mechanisms and Materials." *Chemical Reviews* 114: 9919-86.
- [2] Malato, S., Fernandez-Ibanez, P., Maldonado, M. I. and Blanco, J. 2009. "Decontamination and Disinfection of Water by Solar Photocatalysis: Recent Overview and Trends." *Catalysis Today* 147: 1-59.
- [3] Luu, C. L., Nguyen, Q. T. and Ho, S. T. 2010. "Synthesis and Characterization of Fe-Doped TiO₂ Photocatalyst by the Sol-Gel Method." *Adv. Nat. Sci.*, *Nanosci. Nanotechnol.* 1: 015008.
- [4] Saratale, R. G., Noh, H. S., Song, J. Y. and Kim, D. S. 2014. "Influence of Parameters on the Photocatalytic Degradation of Phenolic Contaminants in Wastewater Using TiO₂/UV System." *Journal of Environmental Science and Health*, Part A 49: 1542-52.
- [5] Ahmed, S., Rasul, M. G., Brown, R. and Hashib, M. A. 2011. "Influence of Parameters on the Heterogeneous Photocatalytic Degradation of Pesticides and Phenolic Contaminants in Wastewater: A Short Review." *Journal* of Environmental Management 92: 311-30.
- [6] Dobrosz-Gómez, I., Gómez-García, M. Á., López Zamora, S. M., GilPavas, E., Bojarska, J. and Kozanecki, M. 2015. "Transition Metal Loaded TiO₂ for Phenol Photo-Degradation." *Comptes Rendus Chimie* 18: 1170-82.
- [7] Rahman, M. A. and Muneer, M. 2005. "Photocatalysed

Photodegradation of Cinnamic Acid Solution in the Presence of Various Oxidizing Agents on TiO₂ and Fe-TiO₂ Catalysts

Degradation of Two Selected Pesticide Derivatives, Dichlorvos and Phosphamidon, in Aqueous Suspensions of Titanium Dioxide." *Desalination* 181: 161-72.

- [8] Rahman, M. A., Muneer, M. and Bahnemann, D. 2002. "Photocatalysed Degradation of a Herbicide Derivative, Diphenamid in Aqueous Suspension of Titanium Dioxide." *Journal of Advanced Oxidation Technologies* 6: 100-8.
- [9] Qamar, M. and Muneer, M. 2005. "Comparative Photocatalytic Study of Two Selected Pesticide Derivatives, Indole-3-Acetic Acid and Indole-3-Butyric Acid in Aqueous Suspensions of Titanium Dioxide." *Journal of Hazardous Materials* 120: 219-27.
- [10] Chen, J. Q., Wang, D., Zhu, M. X. and Gao, C. J. 2007.
 "Photocatalytic Degradation of Dimethoate Using Nanosized TiO₂ Powder." *Desalination* 207: 87-94.
- [11] Muneer, M., Qamar, M., Saquib, M. and Bahnemann, D. W. 2005. "Heterogeneous Photocatalysed Reaction of Three Selected Pesticide Derivatives, Propham, Propachlor and Tebuthiuron in Aqueous Suspensions of Titanium Dioxide." *Chemosphere* 61: 457-68.
- [12] Pino, E. and Encinas, M. V. 2012. "Photocatalytic Degradation of Chlorophenols on TiO₂-325 Mesh and TiO₂-P25. An Extended Kinetic Study of Photodegradation under Competitive Conditions." *Journal of Photochemistry and Photobiology A: Chemistry* 242: 20-7.
- [13] Miranda-García, N., Suárez, S., Sánchez, B., Coronado, J. M., Malato, S. and Maldonado, M. I. 2011.
 "Photocatalytic Degradation of Emerging Contaminants in Municipal Wastewater Treatment Plant Effluents Using Immobilized TiO₂ in a Solar Pilot Plant." *Applied Catalysis B: Environmental* 103: 294-301.
- [14] Jallouli, N., Elghniji, K., Trabelsi, H. and Ksibi, M. 2014. "Photocatalytic Degradation of Paracetamol on TiO₂ Nanoparticles and TiO₂/Cellulosic Fiber under UV and Sunlight Irradiation." *Arabian Journal of Chemistry* http://dx.doi.org/10.1016/j.arabjc.2014.03.014.
- [15] Nawawi W. I. and Nawi, M. A. 2014. "Carbon Coated Nitrogen Doped P25 for the Photocatalytic Removal of Organic Pollutants under Solar and Low Energy Visible Light Irradiations." *Journal of Molecular Catalysis A: Chemical* 383-384: 83-93.
- [16] Sahel, K., Bouhent, M., Belkhadem, F., Ferchichi, M., Dappozze, F. and Guillard, C. 2014. "Photocatalytic Degradation of Anionic and Cationic Dyes over TiO₂-P25, and Ti-Pillared Clays and Ag-Doped Ti-Pillared Clays." *Applied Clay Science* 95: 205-10.
- [17] Sangchay, W., Sikong, L. and Kooptarnond, K. 2012.
 "Comparison of Photocatalytic Reaction of Commercial P25 and Synthetic TiO₂-AgCl Nanoparticles." Procedia Engineering 32: 590-6.

- [18] Oshani, F., Marandi, R., Rasouli, S. and Farhoud, M. K.
 2014. "Photocatalytic Investigations of TiO₂-P25 Nanocomposite Thin Films Prepared by Peroxotitanic Acid Modified Sol-Gel Method." *Applied Surface Science* 311: 308-13.
- [19] Fan, H. J., Lu, C. S., Lee, W. L. W., Chiou, M. R. and Chen, C. C. 2011. "Mechanistic Pathways Differences between P25-TiO₂ and Pt-TiO₂ Mediated CV Photodegradation." *Journal of Hazardous Materials* 185: 227-35.
- [20] Ljubas, D., Smoljanić, G. and Juretić, H. 2015.
 "Degradation of Methyl Orange and Congo Red Dyes by Using TiO₂ Nanoparticles Activated by the Solar and the Solar-Like Radiation." *Journal of Environmental Management* 161: 83-91.
- [21] Abramović, B., Šojić, D., Despotović, V., Vione, D., Pazzi, M. and Csanádi, J. 2011. "A Comparative Study of the activity of TiO₂ Wackherr and Degussa P25 in the Photocatalytic Degradation of Picloram." *Applied Catalysis B: Environmental* 105: 191-8.
- [22] Madani, M. E., Harir, M., Zrineh, A. and Azzouzi, M. E. 2015. "Photodegradation of Imazethapyr Herbicide by Using Slurry and Supported TiO₂: Efficiency Comparison." *Arabian Journal of Chemistry* 8: 181-5.
- [23] Deeb, A. A., Fayyad, M. K. and Alawi, M. A. 2012.
 "Separation of Polyphenols from Jordanian Olive Oil Mill Wastewater." *Chromatography Research International*, doi:10.1155/2012/812127.
- [24] Mantzavinos, D. 2003. "Removal of Cinnamic Acid Derivatives from Aqueous Effluents by Fenton and Fenton-Like Processes as an Alternative to Direct Biological Treatment." *Water, Air, and Soil Pollution Focus* 3: 211-21.
- [25] Zhu, X., Wang, Y., Qin, W., Zhang, S. and Zhou, D. 2016. "Distribution of free Radicals and Intermediates during the Photodegradation of Polychlorinated Biphenyls Strongly Affected by Cosolvents and TiO₂ Catalyst." *Chemosphere* 144: 628-34.
- [26] Masuda, Y. and Kato, K. 2009. "Synthesis and Phase Transformation of TiO₂ Nano-Crystala in Aqueous Solutions." *Journal of the Ceramic of Janpan* 117: 373-6.
- [27] Ranjit, K. T. and Viswanathan, B. 1997. "Synthesis, Characterization and Photocatalytic Properties of Iron-Doped TiO₂ Catalysts." *Journal of Photochemistry and Photobielogy A: Chemistry* 108: 79-84.
- [28] Asiltürk, M., Sayılkan, F. and Arpaç, E. 2009. "Effect of Fe³⁺ Ion Doping to TiO₂ on the Photocatalytic Degradation of Malachite Green Dye under UV and VIS-Irradiation." *Journal of Photochemistry and Photobiology A: Chemistry* 203: 64-71.
- [29] Tian, F., Zhang, Y., Zhang, J. and Pan, C. 2012. "Raman Spectroscopy: A New Approach to Measure the

Photodegradation of Cinnamic Acid Solution in the Presence of Various Oxidizing Agents on TiO₂ and Fe-TiO₂ Catalysts

Percentage of Anatase TiO₂ Exposed (001) Facets." J. Phys. Chem. C 116 (3): 7515-9.

- [30] Peña-Flores, J. I., Palomec-Garfias, A. F., Márquez-Beltrán, C., Sánchez-Mora, E., Gómez-Barojas, E. and Pérez-Rodríguez, F. 2014. "Fe Effect on the Optical Properties of TiO₂:Fe₂O₃ Nanostructured Composites Supported on SiO₂ Microsphere Assemblies." *Nanoscale Research Letters* 9: 1-7.
- [31] Reyes-Coronado, D., Rodriguez-Gattorno, G., Espinosa-Pesqueira, M. E., Coss, R. D., Cab, C. and Oskam, G. 2008. "Phase-Pure TiO₂ Nanoparticles: Anatase, Brookite and Rutile." *Nanotechnology* 19: 145605.
- [32] Chong, M. N., Lei, S., Jin, B., Saint, C. and Chow, C. W. K. 2009. "Optimisation of an Annular Photoreactor Process for Degradation of Congo Red Using a Newly Synthesized Titania Impregnated Kaolinite Nano-Photocatalyst." Separation and Purification Technology 67: 355-63.
- [33] Shirayama, H., Tohezo, Y., and Taguchi, S. 2001. "Photodegradation of Chlorinated Hydrocarbons in the Presence and Absence of Dissolved Oxygen in Water." *Water Research* 35: 1941-50.
- [34] Sánchez, L., Peral, J. and Domènech, X. 1998. "Aniline Degradation by Combined Photocatalysis and Ozonation." *Applied Catalysis B: Environmental* 19: 59-65.
- [35] Deng, Y. and Zhao, R. 2015. "Advanced Oxidation Processes (AOPs) in Wastewater Treatment." *Current Pollution Reports* 1: 167-76.
- [36] Ma, Y., Zhang, X. T., Guan, Z. S., Cao, Y. A. and Yao, J. N. 2001. "Effects of Zinc(II) and Iron(III) Doping of Titania Films on their Photoreactivity to Decompose Rhodamine B." *Journal of Materials Research* 16: 2928-33.
- [37] Zhou, M., Yu, J. and Cheng, B. 2006. "Effects of Fe-Doping on the Photocatalytic Activity of Mesoporous TiO₂ Powders Prepared by an Ultrasonic Method." *Journal of Hazardous Materials* 137: 1838-47.
- [38] Chong, M. N., Jin, B., Chow, C. W. K. and Saint, C. 2010. "Recent Developments in Photocatalytic Water Treatment Technology: A Review." Water Research 44:

2997-3027.

- [39] Ochuma, I. J., Fishwick, R. P., Wood, J. and Winterbottom, J. M. 2007. "Optimisation of Degradation Conditions of 1,8-diazabicyclo[5.4.0] undec-7-ene in Water and Reaction Kinetics Analysis Using a Cocurrent Downflow Contactor Photocatalytic Reactor." Applied Catalysis B: Environmental 73: 259-68.
- [40] Chin, S. S., Chiang, K. and Fane, A. G. 2006. "The Stability of Polymeric Membranes in a TiO₂ Photocatalysis Process." *Journal of Membrane Science* 275: 202-11.
- [41] Toor, A. P., Verma, A., Jotshi, C. K., Bajpai, P. K. and Singh, V. 2006. "Photocatalytic Degradation of Direct Yellow 12 Dye Using UV/TiO₂ in a Shallow Pond Slurry Reactor." *Dyes and Pigments* 68: 60.
- [42] Gogniat, G. T., Thyssen, M., Denis, M., Pulgarin, C. and Dukan, S. 2006. "The Bactericidal Effect of TiO₂ Photocatalysis Involves Adsorption onto Catalyst and the Loss of Membrane Integrity." *FEMS Microbiol Lett* 258: 18-24.
- [43] Rincón, A. G. and Pulgarin, C. 2004. "Effect of PH, Inorganic Ions, Organic Matter and H₂O₂ on E. coli K12 Photocatalytic Inactivation by TiO₂: Implications in Solar Water Disinfection." *Applied Catalysis B: Environmental* 51: 283-302.
- [44] Wang, Y. and Hong, C. S. 1999. "Effect of Hydrogen Peroxide, Periodate and Persulfate on Photocatalysis of 2-chlorobiphenyl in Aqueous TiO₂ Suspensions." *Water Research* 33: 2031-6.
- [45] Yu, J. Q. and Matsui, Y. 1997. "Effects of Root Exudates of Cucumber (Cucumis Sativus) and Allelochemicals on Ion Uptake by Cucumber Seedlings." *Journal of Chemical Ecology* 23: 817-27.
- [46] Rao, K. V. S., Subrahmanyam, M. and Boule, P. 2003.
 "Photocatalytic Transformation of Dyes and by-products in the Presence of Hydrogen Peroxide." Environ. Technol 24(8): 1025-1030.
- [47] Tong, T., Zhang, J., Tian, B., Chen, F. and He, D. 2008. "Preparation of Fe³⁺-Doped TiO₂ Catalysts by Controlled Hydrolysis of Titanium Alkoxide and Study on their Photocatalytic Activity for Methyl Orange Degradation." *Journal of Hazardous Materials* 155: 572-9.

300