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Abstract: The asymptotic behaviour of laminar forced convection in a circular duct, for a Herschel-Bulkley fluid with constant 
properties, is analysed by taking into account the viscous dissipation effects. The axial heat conduction in the fluid is neglected. The 
asymptotic temperature field and the asymptotic value of the Nusselt number are determined for every boundary condition that 
allows a fully developed region. Comparisons with other existing solutions for Newtonian and non-Newtonian cases are presented. 
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a ratio of yield shear stress to wall shear stress 

b(R) solution of Eqs. (19) and (20) 

Br(X) local Brinkman number, )()2(/ 0
1 XqrKu nn

m 
  

C dimensionless constant employed in Eq. (18) 

cp specific heat at constant pressure 

f function of R employed in Eq. (15) 

F function of R and b(R) employed in Eq. (22) 

g arbitrary function of r and x 

K consistency index (Pa.s) 

m inverse of power-law exponent, 1/n 

n power-law exponent 

Nu Nusseltnumber, 2r0qw/[(Tw-Tb)] 
Pe Peclet number, 2r0umcp/ 
qw wall heat flux, J/s 

r radial coordinate, m 

r0 radius of the tube, m 

R dimensionless radial coordinate, r/r0 

T temperature, K 

T0 inlet temperature distribution, K 

u velocity component in the axial direction, m·s-1 

um mean axial velocity, m·s-1 
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U dimensionlessaxialvelocity, u/um 

x axial coordinate, m 

X dimensionless axial coordinate, x/2r0Pe 

Greeks Symbols 

 dimensionless parameter defined in Eq. (14) 

 thermal conductivity of fluid, W·m-1·K-1 
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 fluid density, Kg·m-3 

c yield shear stress, Pa 

w wall shear stress, Pa 

 dimensionless temperature, 1
0

1
0 /)(   n

mb
n KuTTr

 dimensionless temperature, (Tw-T)/(Tw-Tb) 

Subscripts 

b bulk quantity 

w wall condition 

 quantity evaluated for X 

1. Introduction 

Considerable attention has been devoted to 

convective heat transfer in non-Newtonian fluids 

during the past few years, mainly because of the 

increasing importance of these fluids in various 
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chemical, processing, and nuclear industries. 

Heat transfer to Herschel-Bulkley fluids in laminar 

flow through tubes has been investigated to some 

extent. Nouar et al. [1] presented a theoretical and 

experimental study, considering a constant wall heat 

flux boundary condition. In this paper, a correlation of 

Nusselt number is proposed taking into account the 

modification of the wall shear rate induced by the 

rheological properties, and the temperature dependent 

character of the fluid. In a similar study, Nouar et al. 

[2] obtained numerical results assuming fully 

developed flow at the entrance of the heated region. 

Two boundary conditions have been considered, 

constant wall heat flux and constant wall temperature. 

Axial conduction was neglected, and the temperature 

dependence of the consistency index was considered. 

Correlations for friction factor and Nusselt number 

were also proposed. Javaherdeh and Devienne [3] 

presented experimental and numerical results concerning 

heat transfer for Herschel-Bulkley fluids, the 

consistency of which depends on temperature. They 

have considered the flow through a horizontal 

cylindrical duct submitted to a wall cooling by an 

external counter current flow. They developed a simple 

model predicting the wall temperature distribution. 

Sayed-Ahmed [4] introduced a numerical solution 

for laminar heat transfer of a Herschel-Bulkley fluid in 

the entrance region of a square duct assuming fully 

developed velocity profile. He solved the energy 

equation with dissipation effect using an implicit 

Crank-Nicolson method. 

Analytical solutions are obtained by Pinho [5] for 

heat transfer in concentric annular flows of viscoelastic 

fluids modeled by the simplified Phan-Thien-Tanner 

constitutive equation. Solutions for thermal and 

dynamic fully developed flow are presented for both 

imposed constant wall heat fluxes and imposed 

constant wall temperatures, always taking into account 

viscous dissipation. Khatyr et al. [6] give analytical 

solutions for fully developed laminar forced 

convection in circular ducts for a Herschel-Bulkely 

fluid in a horizontal duct heated uniformly, and with 

various axial distributions of wall heat flux for which 

polynomial and logarithmic functions was considered 

as examples. Heat transfer with the effect of viscous 

dissipation for steady, laminar, both hydro-dynamically 

and thermally fully developed pseudo-plastic fluid 

through a channel of Couette-Poiseuille flow, where 

both the plates are kept at specified but different 

constant heat flux ratios being considered as thermal 

boundary conditions is studied by Sheela-Francisca 

[7]. Rashidi and Erfani [8] studied analytically the 

thermal-diffusion (Soret effect) and diffusion transfer 

of a steady MHD (magnetohydrodynamic) convective 

and slip flow due to a rotating disk with viscous 

dissipation and ohmic heating. They presented the 

influence of the slip parameter and the magnetic field 

parameter and of Eckert, Schmidt, Duforand Soret 

numbers on the profiles of the dimensionless velocity, 

temperature and concentration distributions. Rashidi 

et al. [9] studied analytically the effect of the 

buoyancy force and thermal radiation in MHD 

boundary layer viscoelastic fluid flow over a 

continuously moving stretching surface in a 

porousmedium. They concluded that the effect of 

viscoelastic parameter is to decrease the velocity and 

increase the temperature in boundary-layer. 

Abbasbandy et al. [10] presented the numerical and 

analytical solutions for Falkner-Skan flow of MHD 

Oldroyd-B fluid. They used homotopy analysis 

method and numerical Keller-box method. They 

concluded that the skin friction coefficient in 

Oldroyd-B fluid is larger when compared with viscous 

fluid, and that the relaxation and retardation times 

have opposite effects on the velocity components. 

Recently, fourth order Runge-Kutta method has been 

used to investigate the unsteady MHD free convective 

boundary-layer flow due to a permeable stretching 

vertical surface in a nano-fluid [11]. 

To our knowledge, no semi-analytical solution of 

the forced convection with viscous dissipation in a 

circular duct of Herschel-Bulkley fluid with 
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no-uniform wall heat flux distribution qw(x) which 

tends to infinity for large value of x, is available in the 

literature. 

The aim of the present work is to study a fully 

developed laminar forced convection in circular ducts 

for a Herschel-Bulkely fluid with viscous dissipation 

and negligible axial heat conduction in the fluid. The 

effect of the dimensionless radius of the plug core, the 

power-law exponent and the Brinkman number are 

presented and compared to those obtained in previous 

works. 

This paper is organized as follows: in Section 2, the 

considered fully developed velocity profile and the 

energy equations are presented; Section 3 is devoted 

to the establishment and discussion of the results of 

the asymptotic behaviour of the temperature field and 

the Nusselt number; the conclusion is summarized in 

Section 4. 

2. Analysis 

Let us consider a Herschel-Bulkley fluid of constant 

physical properties flowing in a circular duct of radius 

r0, submitted to a variable axial wall heat flux qw(x). 

The flow is supposed to be steady, laminar, fully 

developed and axisymetric. 

The fully developed velocity profile for a laminar 

pipe flow of a Herschel-bulkley is given as follows 

[12]: 
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௠ାଷ
ቁ, m = 1/n is the 

inverse of exponent index n, a = c/w = rc/r0 is the 

dimensionless radius of the plug flow region, c the 

yield shear stress, w the wall shear stress, r the radial 

coordinate, rc the yield radius, and um the mean value 

of velocity. 

The energy equation and associated boundary 

conditions are given by Ref. [13] 
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where, , , K and cp are the density of fluid, thermal 

conductivity, the consistency index, and the specific 

heat at constant pressure, respectively. 

The condition that leads to an asymptotic thermally 

developed region in the case of the forced convection 

problem described above is defined by Ref. [13] 
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where, Tw(x) and Tb(x) are the wall temperature and 

the bulk temperature, respectively, Pe is the Peclet 

number, and (r/r0) is the asymptotic dimensionless 

temperature which is a continuous and differentiable 

function of r. The bulk value of an arbitrary function 

g(r, x) is defined as 

0
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If condition (5) holds, the asymptotic value of the 

Nusselt number Nu exists in Ref. [13] and is given 

by 

0
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The proof presented by Barletta [14], allows to 

check that the boundary value problem, expressed by 

Eqs. (2)-(4), has a unique solution, and that both the 

asymptotic behaviour of the temperature field and of 

the Nusselt number are independent of the inlet 

section temperature distribution. 

Introducing the dimensionless quantities 
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  (8) 

Eqs. (2) and (3) can be rewritten in the 

dimensionless form 
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where, Br(X) is a local Brinkman number defined as: 
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Integrating Eq. (9) over the interval 0 R  1 and 
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where, b(X) is the bulk value of the dimensionless 

temperature (R, X) 

3. Asymptotic Behaviour of the Temperature 
Field 

In this work, the asymptotic temperature field and 

the asymptotic Nusselt number are analyzed in the 

case of axial distributions of wall heat flux which 

yield a thermally developed region, such as 
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where,  is a non-vanishing positive real number. 

Eq. (13) shows that the effect of viscous dissipation 

is negligible in the thermally developed region. Eqs. 

(13) and (14) are satisfied by axial wall heat flux 

distributions which tends to infinity when X  +, 

and which behave asymptotically as XXQ 2e)( , Q(X) 

can be a polynomial function, or rational function 

where the degree of the numerator is greater than or 

equal to the degree of the denominator, or any other 

function satisfying Eq. (13). 

Therefore, in these distributions the dimensionless 

temperature field for large value of X can be expressed 

by 
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By substituting Eq. (15) in Eqs. (9) and (10) and 

taking into account Eqs. (12)-(14), one obtains 
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Eq. (16) can be reduced to a first-order differential 

equation using the following transformation 
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where, C is a constant given by the boundary 

condition at R = 1 and b(R) is a continuous and 

differentiable function of R. 

Substituting Eq. (18) into Eq. (16), gives 
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Eq. (19) can also be written as: 
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This equation with boundary condition (20) is 

integrated numerically using fourth-order 

Runge-Kutta method [15, 16]. This method is still one 

step, but dependent on estimates of the solution at 

different points, and requires 4 evaluations of function 

F(R, b) at every time step. 

R is the independent variable, b = b(R) is       

the unknown function of R, b0 = b(0) is the      

given condition (Eq. (20)), and F is a given   
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Table 1  Values of Nu for various values of n compared with those of Barletta [14] in the power-law fluid case (a = 0). 

 
n = 1/5 n = 1/3 n = 3 

Present work Barletta [14] Present work Barletta [14] Present work Barletta [14] 

1 5.6141 5.6141 5.1431 5.1431 4.1324 4.1324 

5 5.9774 5.9774 5.4818 5.4818 4.4358 4.4358 

10 6.3858 6.3858 5.8613 5.8613 4.7715 4.7715 

20 7.0896 7.0897 6.5129 6.5129 5.3395 5.3395 

30 7.6865 7.6865 7.0634 7.0634 5.8131 5.8132 

40 8.2081 8.2082 7.5436 7.5436 6.2230 6.2230 

50 8.6740 8.6741 7.9717 7.9717 6.5860 6.5860 

60 9.0968 9.0969 8.3597 8.3597 6.9143 6.9144 

70 9.4851 9.4852 8.7159 8.7159 7.2145 7.2146 

80 9.8452 9.8453 9.0459 9.0459 7.4920 7.4921 

90 10.1817 10.1818 9.3542 9.3542 7.7508 7.7509 

100 10.4982 10.4983 9.6439 9.6439 7.9937 7.9938 

200 12.9731 12.9732 11.9067 11.9067 9.8822 9.8824 

500 17.4740 17.4740 16.0133 16.0133 13.2900 13.2902 

1,000 22.0460 22.0461 20.1794 20.1794 16.7352 16.7354 

10,000 48.3120 48.3125 44.0751 44.0751 36.4280 36.4282 
 

 

 
(c) =1,000 

Fig. 2  Evolution the (R) for various values of n and , and for a = 0.4. 
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Fig. 3  Variation of Nu versus  for various values of a: (a) n = 1/3, (b) n = 1 and (c) n = 3. 
 

Table 2  Asymptotic values of Nu for various values of  

and a, and for n = 1/3. 

 a = 0 a = 0.2 a = 0.4 a = 0.6 a = 0.8 

1 5.1431 5.4157 5.7934 6.3201 7.0691 

5 5.4818 5.7652 6.1624 6.7273 7.5491 

10 5.8613 6.1576 6.5775 7.1849 8.0916 

20 6.5129 6.8333 7.2937 7.9765 9.0367 

30 7.0634 7.4054 7.9014 8.6496 9.8454 

40 7.5436 7.9051 8.4329 9.2390 10.5569

50 7.9717 8.3511 8.9077 9.7658 11.1949

60 8.3597 8.7557 9.3385 10.2442 11.7756

70 8.7159 9.1272 9.7345 10.6839 12.3101

80 9.0590 9.4717 10.1016 11.0916 12.8070

90 9.3542 9.7935 10.4448 11.4729 13.2717

100 9.6439 10.0960 10.7674 11.8314 13.7093

200 11.9067 12.4610 13.2914 14.6359 17.1407

500 16.0133 16.7582 17.8824 19.7383 23.3965

1,000 20.1794 21.1208 22.5471 24.9243 29.7537

10,000 44.7351 46.1638 49.3499 54.7492 66.2931

 

Table 3  Asymptotic values of Nu for various values of  

and a, and for n = 3. 

 a = 0 a = 0.2 a = 0.4 a = 0.6 a = 0.8 

1 4.1324 4.2393 4.5164 5.0840 6.1377 

5 4.4358 4.5415 4.8154 5.3939 6.5156 

10 4.7715 4.8767 5.1493 5.7413 6.9385 

20 5.3395 5.4461 5.7208 6.3386 7.6655 

30 5.8331 5.9225 6.2023 6.8438 8.2795 

40 6.2230 6.3354 6.6217 7.2849 8.8143 

50 6.5863 6.7021 6.9952 7.6786 9.2904 

60 6.9143 7.0334 7.3335 8.0358 9.7210 

70 7.2145 7.3368 7.6437 8.3638 10.1158 

80 7.4920 7.6175 7.9310 8.6680 10.4809 

90 7.7508 7.8793 8.1993 8.9522 10.8216 

100 7.9937 8.1250 8.4514 9.2195 11.1413 

200 9.8822 10.0373 10.4173 11.3105 13.6280 

500 13.2900 13.4911 13.9773 15.1144 18.1187 

1,000 16.7352 16.9843 17.5825 18.9770 22.6725 

10,000 36.4280 36.9584 38.2165 41.1323 48.8644 
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4. Conclusions 

Laminar and hydrodynamically developed forced 

convection of a Herschel-Bulkley fluid flowing in a 

circular tube with a prescribed axial distribution of 

wall heat flux has been studied. The effect of viscous 

dissipation has been taken into account, while the 

axial heat conduction in the fluid has been considered 

as negligible. It has been supposed that, when x +, 

qw(x) tends to infinity, while (1/qw(x))(dqw(x)/dx) tends 

to a positive constant. If these conditions are fulfilled, 

the effect of viscous dissipation becomes negligible in 

the thermally developed region and the asymptotic 

value of the Nusselt number is a function of n, a and 

the dimensionless parameter . The asymptotic values 

of the Nusselt number Nu have been evaluated 

numerically for some values of n, a and . The 

comparisons between our theoretical results and those 

published in the literature for the Newtonian fluid case 

and the non-Newtonian fluid case (power-law fluid) 

show very close agreement. 
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