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Abstract: Heat resistant stainless steel castings are widely used in several industrial sectors working at high temperatures like 
cement, chemical, heat treatment, metal enameling and other several industries. The purpose of this investigation is to examine the 
influence of changing microstructures and intermetallic precipitates (Ni3Al, Ni3Ti) by heat treatment on the mechanical properties of 
heat resistant steel castings of type 11Ni-23Cr-0.35C used at temperatures more than 950 ºC. Aluminum and Titanium were added to 
the steel melt before tapping the heat into the casting moulds. The change in microstructures after aging heat treatment (850-900 ºC, 
85 to 200 h) was detected using scanning as well as optical microscopy. The mechanical properties (high temperature tensile and 
hardness and creep tests) were measured for all the microstructures obtained in as cast, solution treated and aged conditions. The 
results showed improved mechanical properties as compared to that for plain heat resistant steel castings, assuring enhancement of 
life time of treated and aged parts. 
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1. Introduction 

Heat resistant castings are capable to withstand high 

temperature operations in excess of 650 ºC either 

continuously or intermittently [1]. They have high 

carbon content up to 0.7% to improve elevated 

temperature strength and creep resistance but reduce 

the ductility [2]. Heat resistant steel casting are widely 

used in annealing trays, carburizing boxes, radiant 

tubes, retorts, petroleum still-tube supports and are 

widely used in cement, chemical, heat treatment and 

enameling industries [3-5]. The most remarkable alloy 

is the HH heat resistant austenitic cast steel having 

10-12% Ni, 22-25% Cr, 0.3-0.45% C according to 
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ASTM A608 (HF30) [6]. 

In this alloy Nickel and Chromium have the 

greatest influence on improving creep strength, 

thermal fatigue and oxidation resistance at high 

temperatures up to 1,000 ºC. Nickel (10-12%) and 

Carbon (up to 0.45%) improve the strength and creep 

resistance at such high temperature [7, 8]. The 

presence of up to 2% Si and 2% Mn in this HH alloy 

contribute to more oxidation resistance and solid 

solution strengthening [9]. It was reported that long 

exposure time of that HH alloy at temperatures higher 

than 850 ºC resulted in an offset of its life time due to 

embrittlement inside and between the dendrite arms of 

cast structure [9]. In many applications of such alloy 

in industry, sever adhesive and abrasive forces are 

induced which increase the propagation of thermal 

fatigue and accordingly reduce the life time of the 

alloy [10, 11]. Many researchers tried to improve the 
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embrittlement phenomenon and to increase the life 

time through adding carbide forming elements like 

tungsten, niobium and vanadium. However, it was 

reported that addition of niobium to that cast alloy 

combined some of carbon to form NbC instead of 

Cr3C2, Cr7C3 and Cr23C6, although Nb had affinity to 

form brittle intermetallic phase with Ni and Si called 

G-phase [12-15]. However, Al or/and Ti were 

reported to be beneficial to inhibit the effect of such 

brittle phase [16].  

2. Material Design & Aim of Research 

This research aimed to improve high temperature 

strength, hardness and creep resistance of the HH heat 

resistant alloy steel. This is only possible by adding 

aluminum and/or titanium to the alloy during melting 

with a background that Al forms intermetallic phase 

with Ni called gamma prime (Ƴ) phase Ni3Al which is 

FCC phase coherent with austenitic base matrix, 

however, Ti can not only form gamma prime phase 

(Ƴ) Ni3Ti which is coherent with the austenite matrix 

as well, but also reacts with some of the carbon in the 

alloy to from TiC that increases the free Cr content, 

which increases in turn oxidation resistance of the 

alloy. These Intermetallic precipitations inside the 

austenite matrix were accomplished by aging the new 

alloy composition for long time at high temperature 

(850-900 ºC). 

3. Experimental Procedure 

3.1 Melting and Casting 

Four cast-heat resistant steel melts were prepared 

using clean HH-alloy scrap, aluminum (99.9%), 

ferrotitanium (48% Ti, 3% Al), ferrochromium (70% 

Cr, 0.05% C), graphite and nickel pellets. The steel 

scrap was melted in coreless medium frequency 

induction furnace. After complete melting addition of 

CaO-alumina slag to the top of the molten steel in 

order to protect it from further oxidation and to absorb 

any impurities coming up from the melt during 

induction stirring. Additions of Al metal, FeTi, 

Graphitic Carbon, FeCr and Ni pellets were only done 

after the first sample analysis to correct the final 

composition of the alloys under investigation. Pure 

plain carbon steel scrap can be used to correct any 

increase in the alloy contents. The casting temperature 

was adjusted at 1,580 ºC using dipping thermocouple. 

Every melt was tapped and cast into preheated, ZrO2 

sprayed, Y-block cavity according to DIN EN 1536 

type 3. The lining of the induction furnace was chosen 

to be high alumina lining. 

The chemical composition of the prepared Y-block 

castings is shown in Table 1.  

3.2 Heat Treatment  

The solidified Y-blocks together with their risers 

and in-gates were homogenized annealing at 950 ºC 

for three hours to remove segregation and relief 

stresses generated during solidification. After air 

cooling, the castings were blasted with steel shots and 

then all its in-gating system was cut. The Y-blocks 

were shot blasted second time to remove new scale 

and processing spatter.  

Solution treatment of the Y-blocks were done at 

1,000 ºC for 2 h and then water quenching (WQ) to 

re-dissolve carbon into austenite and remove any 

precipitation of both sigma (σ) and G-phases. Test 

samples for microstructure and hardness, tensile, creep 

were machined from the Y-blocks. Final aging heat 

treatment of the samples was achieved at 850-900 ºC 

for 85 to 200 h.  
 

Table 1  Chemical composition of the experimental modified HH-Casts.  

Alloy C Si Mn Cr Ni Mo Al Ti 

HH 0.35 1.56 1.35 24.62 11.36 0.32 0.03 0.01 

HH-1 0.37 1.48 1.41 24.31 12.03 0.23 0.92 0.00 

HH-2 0.34 1.53 1.39 23.94 11.85 0.21 0.81 0.25 

HH-3 0.32 1.46 1.38 24.74 12.04 0.15 0.79 0.47 
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4. Results and Discussion 

4.1 Changes in Microstructures after Aging  

The microstructures of the cast alloys (HH, HH1, 

HH2, and HH3) are nearly the same in as cast 

conditions as shown in Fig. 1, where the austenitic 

phase is surrounded by narrow fingers and/or islands 

of ferrite. Dispersions of chromium carbides, 

cementite (Fe3C) and TiC can be observed at grain 

boundaries or inside the dendrite arms. Ferrite islands 

are formed inside grain boundaries and surrounded 

with Cr7C3, Cr23C6, TiC and sigma (σ) as well as 

G-phases.  

It is evident that the as-cast structure has coarse 

austenite grains (ASTM No.3) with wide boundaries, 

and the dendrite arms co-inside along with the grain 

boundaries. Massive precipitations of chromium 

carbides inside the grain boundaries are observed, 

however fine TiC are distributed inside austenite and 

its grain boundaries. 

Solution treatment of the cast samples resulted in 

grain refinement and narrowing the grain boundaries 

as shown in Fig. 2, due to the partial dissolution of 

carbon in austenite and the minimum time for grain 

growth. It can be observed that the transformed ferrite 

phase is still there inside or near the grain boundaries 

of austenite; however, some of TiC and the rest of 

Cr7C3, Cr23C6 are coagulated inside grain boundaries. 

The changes in microstructures occurring after 

aging the solution treated cast samples (850-900 ºC, 

85-200 h, air cool) can be observed as in Fig. 3, where 

fine intermetallic compounds of Ni, Al and Ti are 

precipitated inside the austenite phase. The density 

and grain size of the precipitated hard particles of (Ƴ) 

phase depended on the time span of aging process; 

however, coagulation of gamma-prime phase took place 
 

 
HH                                             HH-3 

 
HH                                              HH-3 

Fig. 1  As cast microstructures of HH, HH-3 heat resistant steel casts.  
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HH                                           HH2 

 
HH3 

Fig. 2  Microstructures of solution treated heat resistant casts, (1,100 ºC, 2 h, WQ).  
 

at 200 h aging time for the alloy HH-1 having 0.92% 

Al. Addition of Ti to that alloy refined the 

gamma-prime phase due to the presence of TiC which 

pin the matrix preventing further grain growth or 

coagulation of the second phase. 

4.2 Mechanical Testing 

4.2.1 Hardness  

Hardness of the heat treated investigated cast alloys 

were measured at room temperature using IDENTIC 

universal measuring machine and an average of three 

tests are reported in Table 2. The results show that the 

hardness of as cast alloys (110-121 HB) are increased 

by aging depending on the aging time at specific 

temperature. Solution treatment resulted in only slight 

increase in hardness for all alloys due to the resolution 

of some carbide into the austenite which increases the 

strain hardening capacity of austenite. The maximum 

hardness is obtained for alloys HH-1, HH-2 and HH-3 

after 200 h reaching 265, 300, and 400 HB 

respectively. 

Fig. 4 illustrates the trend of hardness 

measurements for all alloys aged at 900 ºC for 200 h. 

It is clear that aging of cast alloy at any temperature 

and time resulted in only slight increase in hardness 

while the presence of Al and Ti in other alloys 

contributes to higher hardness due to the formation of 

intermetallic compounds as mentioned earlier. 

4.2.2 Tensile Strength  

Fig. 5 shows the trend of tensile strength measured 

at room temperature for all alloys after aging at 900 ºC 

and 200 h. Alloying with 0.9% Al increased the strength 
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Fig. 4  Hardness of the produced alloys in as-aged conditions (900 ºC, 200 h).  
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Fig. 5  Tensile strength of aged alloys (900 ºC, 200 h).  
 

to about 300 MPa, while addition of about 0.47% Ti 

increased the strength to about 458 MPa for alloy 

HH-3. This increase in strength is nearly double that 

for cast alloy HH. The precipitation of Ni-Al-Ti 

gamma prime phases hardens the austenite matrix for 

that maximum strength; however, the strength of alloy 

HH-1 is increased moderately after aging for 200 h 

due to the coalescence of precipitates together 

producing blocky non-homogeneous precipitates. 

 

4.2.3 Creep Strength 

The aged cast heat resistant alloys were subjected 

for long time creep tests at a stress of about 115 MPa 

and a fixed temperature of about 800 ºC. The creep 

behavior of those alloys are projected as in Fig. 6, 

which illustrate that the HH alloy was failed after 

about 1,000 h after strained by about 8%, however 

alloy HH-3 resisted till a life of about 8,000 h after 

strained by  about 12%.  Alloys HH-1  and HH-2  failed 
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Fig. 6  Creep behavior of the produced cast alloys HH, HH-1 to HH-3.  
 

 
Fig. 7  Fracture surfaces for alloys crept at 800 and 115 MPa.  

after 4,300 h and 6,000 h at strain values 15% and 

23% respectively. It is evident that the hard strong 

matrix of alloy HH-3 has long life time but stiff to be 

strained and failed after 12% as compared with both 
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HH-1 and HH-2 alloys that strained till 15% and 23%. 

Accordingly, the alloy designer has to choose HH-2 or 

HH-3 alloy according to the applied forces at 800 ºC. 

The intermatallic compounds formed during aging of 

alloys HH-2 and HH-3 strengthen and harden the 

austenite matrix preventing it to fail after short loading 

time, in other words alloying of HH cast steel with 

both Ti (0.25-0.47%) and Al (0.81-0.79%) together 

gives the maximum performance of such alloy even 

over than that for alloy containing 0.9% Al. The 

appearance of the crept fracture surfaces are depicted 

in Fig. 7, where at least 80% ductile fracture is 

observed for alloy HH-2, however, some brittle facets 

can be observed in fractured alloys HH and HH-3. It 

can be observed also that the separation of grains 

during fracture at high temperature is enhanced at the 

peripheries of Ni3Al and Ni3AlTi intermetallic Ƴ 

precipitates as shown for alloys HH-2, and HH-3 in 

Fig. 7.  

5. Conclusions 

From the above mentioned measurements and 

discussions it can be concluded that: 

Additions of Al (0.79-0.92%) and /or Ti 

(0.25-0.47%) to HH-base alloy form with Ni 

intermetallic precipitates in the austenite matrix after 

aging heat treatment (850-900 ºC, 85-200 h). 

It was proved that the hardness and strength of the 

developed HH alloy were increased to reach 400 HB, 

458 MPa respectively using Al-Ti combined alloying,  

The creep resistance of the developed HH alloy 

reached 6,000 to 8,000 h at strains 23 and 12% when 

alloyed with Al and Ti. The fracture appearance after 

creep proved to be highly ductile as compared to that 

for HH-base alloy. 
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