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Abstract: We developed a system for monitoring the ionosphere, which uses the GNSS network located in the western part of Ukraine.
The system is based on determining the ionosphere parameters from GNSS observations performed at an individual station. We are
proposed algorithm for restoring the spatial position of the ionospheric state or its ionization field according to the regular definitions of
the TEC parameter. The description below shows one of the possible solutions that are based on the application of the regularized
approximation of functions with numerous variables. To experimentally determine the changes in the ionization field in time, we took
measurements from 272 days in 2013 that were determined during the GNSS observations at 17 continuously operating stations of the
ZAKPOS network. The resulting error indicators show that the developed algorithm gives consistent results for ionization field
restoration that do not depend on the ionosphere state, satellites positions and changes in number of stations in the network used for

computations.
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1. Introduction

Due to the wide application of global navigation
satellite systems (GNSS), the development of the
modern GNSS infrastructure moved the monitoring of
the Earth’s ionosphere to a new methodological and
level. The

monitoring is that it allows conducting different

technological peculiarity of such
experimental studies including the study of the
ionosphere directly while using the existing networks
of reference GNSS stations intended for solving other
problems.

The application of the modern GNSS infrastructure
is another innovative step in the ionospheric studies as
such networks allow to conduct measurements
continuously over time in any place. This is used

during the monitoring of the ionosphere and allows
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studying the global and regional phenomena in the
ionosphere in real time.

Application of a network of continuously operating
reference  stations to  determine  numerical
characteristics of the Earth’s ionosphere allows
creating an effective technology to monitor the
ionosphere regionally. This technology is intended to
solve both scientific problems concerning the space
weather, and practical tasks such as providing
coordinates of the geodetic level accuracy.

Thus, for the calculated numerical characteristics of
the ionosphere that reflects the determined functional
dependencies from the time [1, 2] of the individual
system parameters and processes of different nature, a
universal algorithm of regularized identification of
mathematical macromodels was developed.

The practical implementation of this algorithm

improves the processing of the measured data,
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monitoring tools, recovery of missed measured data
and its prediction.

2. Formulation of the Problem

For continuously operating reference GNSS stations,
the results of the determined ionization identifier TEC
(Total Electron Content) that describes the number of
ions in the atmosphere on the line between the ground
station and the moving satellite accumulate. On the one
hand, this data reflects the state of the ionosphere
during the observation; on the other hand, it is a
substantial tool for accuracy improvement and reliable
determination of coordinates of the observation place.

Thus, it was decided to solve a problem of restoring
the spatial position of the ionospheric state or its
ionization field according to the regular definitions of
the TEC identifier, i.e., STEC (Slant TEC). The
description below shows one of the possible solutions
that is based on the application of the regularized
approximation of functions with numerous variables.

Initial data to restore the ionization field:

*  coordinates of reference stations:

XP Y (), Z7 () (=105 k=1.K). (1a)
*  coordinates of GNSS satellites:

X3P, Y ), 2 () (j=1m ; k=LK), (1b)

*  STEC values between the station i and satellite j:

s;(t) G=Ln; j=1Lm ; k=1,K) (o)

where: ty — time of the STEC measurement; K — number
of measurements; i — station number; j — satellite
number; ng, My, — number of stations and satellites
during the measurement k, respectively. Further, we
used data from 19 reference stations in the Western
Ukraine.

The solution to this problem is to define the

ionization field

V=V(X,Y,Z1)

for the area where the stations are located (X, Y, Z)

during the time t € [tl , tK ].

3. Restrictions and Assumptions for Use of
the GNSS Measurements to Restore the
lonization Field

The coordinates of an individual station (la) and
available satellite j (1b) define the line segment that
connects the point on the Earth’s surface with the
satellite. This line segment comes through the Earth’s
ionosphere as well. One of the assumptions in this case
is that the ionosphere layer has an effective thickness
that is defined by the sub-ionospheric point H.
According to this assumption, all ionized atoms are
located on the surface of some sphere with the radius
defined by the sub-ionospheric point.

Let’s divide the part of the specified line segment
into N-1 equal segments, thus, getting N equally
located nodes that lie on a beam from the station to the
satellite below the sub-ionospheric point (Fig. 1):

Xlkl :Zjl(tk)’ 7||J<| :yijl(tk)’ ijl :Zjl(tk)’ ?)

—k =k . .
where: Xijl , yijl , Zijl are spatial coordinates of a

point | on a beam between station i and satellite j

G=1L,n s j=L,m s 1=1,N;k=1K).
Supposing that the state of the ionosphere changes
evenly along the beam between the station and the

satellite, the ionization field indicator in each node can

be described as:

Satellite 1

Satellite 2 ?7

Points (2)

Station 1 Station 2 3
\’f"t\\\

Fig. 1 Spatial location of the nodes.
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=k

Vi =$;t)/N(i=1n_ j=Lm: I=LN; k=LK), 3)
where Vukl — ionization parameter in point | on a beam

between station i and satellite j.

Expression 3 describes the ionization values
determined experimentally. GNSS observations show
that the beams from satellites to stations at one point in
time lie mostly in certain directions only, while there
are few of them that lie in other directions or none at all
(Fig. 2).

This fact makes the conditions of the interpolation
problem worse. For their improvement, we connected
all the points (2) on the beams between the stations and
satellites and on the formed line segments we defined
internal equally located nodes that do not lie on the
boundaries of the line segments (see Fig. 3):

kr s kr

NG okr
Xijpg , Ying , Zijpq , (4)

FKr okr =kr . .
where: Xiqu, yiqu, Ziqu — spatial coordinates of

the point r (y — {_ v ) on the line segment between

ok <k =k ok ok =k
the nodes ( Xijp, Yiip» Zijp ) (Kijg»> Yiig» Zijg );

p.ge[l,N];i=1n j=1,m,; k=1,K;
M — number of internal nodes on a line segment

between the points on the beam.

il +

5

Fig. 2 Common view of beams from the station to the
satellites according to (1a) and (1b).

5 s e 9

Fig. 3 Beams from stations to satellites (in grey), their
sub-ionospheric line segments (in red) and points (2) on
them (in blue).

Ionization parameters in the nodes (4) are defined

using linear interpolation value of this indicator on a

. . vk k sk
line segment between the points (Xijp’ yijp , ZijIO ),

ok Tk ok ) )
(Xiq> Yig» Zig» P.Q€[LN]s i=n; j=1Lm,.
It is described as:

—kr
Viiog

(i=Lnsj=Lm;p.qe[,N];r=1,M;k=1K) (5)

Expression 3 describes ionization in the nodes (2)
located along the beams between the stations and
satellites. Expression 5 describes ionization in the
nodes (4) that lie between such different beams. It was
found that data from expressions 2-5 is not enough to
restore the ionization field as approximating functions
deviate greatly from the observational ionization
values beyond the nodes (2), (5).

4. Description of the Method for Determining
lonization Using STEC

For practical purposes, we need to define ionization

in the spatial area:

Xe[XS, , Xtﬂ]’ Y €[Yiins yrl;ax], ZE€[ 2110 B 6)

where the area boundaries are defined by the extreme
points of the set of nodes (2) that are located on the

beams between the stations and satellites:

k - =k
k s ook . K I L = N
Xinin = H}Jlln Xijl > Yiin = nllj}l'l Yin? me Hllj}n ZIJI >
Ko ok ko k- ok _ —k
Xmax = max Xijl > ymax - IT};":IIX yijl i Zmax =max Zij| ’

il il
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Let’s divide line segments that describe the
rectangular area (6) into L-lsmaller segments and
determine the coordinates of the equally located nodes:

%, 9,2 d,jl=L0. @

To restore the ionization field in the area (6)
according to the data from the expressions 2-5, a new
condition needs to be imposed: ionization derivatives
with respect to the coordinates must be minimal in the
points (7). Such condition reduces strong deviations of
the approximating function beyond the nodes (2), (4). It
should be noted that the solution to the problem of the
ionization field restoration lies in finding the ionization
values in the nodes (7).

Set of the points (2), (4) coordinates is denoted by:

X = (KR Yo ={00 ] 2 =30 20} 0
where: a=1,A ; A — number of points in the
expressions (2), (4) (i=1n: j=Lm: p,ge[l,N]:
r=,M; k=1K).

Set of the ionization identifier values (3), (5) is
denoted by:

vi = (v b ©)

Sets (8), (9) define the discrete dependency of the

ionization V_ from the values of three spatial

coordinates (X: , y: , Z:) (a=1,A ). This

dependency is approximated by the exponential

polynomial from numerous arguments:

V(X Y, X) = R (X, ¥,X).

During the calculations, such polynomials were
selected:

P (X, y,x) =D, i+j+I<RCi|}|Xiij| :

Pe(x,y,x) = z “”H‘(RCiﬁlXiyjzl ’

k A, A5 Al -
Pox.y.2) =2, cpx My izt
k Ai Aj5 4l
Pe(X,y,2) =), i S X Y 2T

where: R — exponent of polynomial (R = 1,...,4)); C:(

— coefficients of this polynomial, | — multi-indexes of

these coefficients; A — number close to R
(Ae[R-0.3;R+0.3]).

exponents was also selected:

k X z z
P.(X, y,z):Zc§x§y§Zx§ yez

where & (i =
numbers. In particular, exponents & € [-0.5, +0.5], &

Polynomial ~ with  random

X, y, z) equally distributed random

e [-1, +1] were selected as an initial approximating
basis from 50, 100 and 200 polynomial items. The
structure of the approximating basis was selected in
such a way that the argument exponents are close to 1.
It is empirically known that this improves the
extrapolation of the simulated values in the nodes (7).

Polynomials, rational functions and generalized
polynomials are used for the approximation of
functions as well [3]:

f0=2" a;p;(%).

where: f(X) — approximating function; a -
approximation coefficients; ¢j(X) - functions with
special properties, in particular, trigonometric and
exponential functions; N — number of functions. If g;(X)
is Legendre polynomial, then during its
orthogonalization fractional-rational functions that are
identical to polynomials with fractional exponents
appear [4].

To find approximation coefficient Clk using the

(8) and (9),

identification problems regularized by minimizing the

data from expressions we used
stabilizing Tikhonov functional [5] and reduction of
the approximating basis [6, 7]. However, such

approximation has an acceptable error of

approximation only in the identification nodes (2), (4)
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and beyond them deviates greatly from the
approximated value in the points (7).

Thus, to restore the ionization field, additional
measures were taken. An artificial argument that
depends nonlinearly on x, y, z was added to the

arguments of the polynomial:
- Ay, AQg Al Ap
Pk(x’y’z’r)_Z‘i+j+l+p‘<RCij|PX y-zor (10)
in particular:
_ k 2 k 2 k 2
r= O =07+ (yE =y + (Ve - )

. k k Sk
where I' — radius-vector; X, Y.,Z,

— center

coordinates of the parallelepiped (7).

Identification problem intended to determine the
polynomial coordinates for a separate calculation
ke[1,K] has two conditions:

e  approximation of values (9) in the points (8):

min3 vt R0 e 2o ] +a X (6 ) )
o a=l :

e  minimization of the polynomial derivative Py with
respect to its argument in the points (7)

2

RS . 2

min > [O_ )y Pk“(xi,yj,zl,rp)J ray(c) (12)
il p=l q=X,Y,z,r 1

where: (;Ik — polynomial coefficients Py; | — their

multi-indexes; B! — polynomial derivatives P

(Q=X,Y,Z,I):

pkxzs_xpk(x,y,z,r);
pky:%Pk(X,y,Z,r);
szzj—ka(X,y»Zar);
pkrzg_rpk(x,y,z,r)

To solve (11), (12), the of the

approximating basis described in [6-8] was used. To

reduction

reduce the deviations of the approximating polynomial

from the measured ionization values, the first-degree

(R = 1) polynomial was chosen and minor deviations

A1€[0.7, 1.3] were applied [9-11].

Multiple solving of the problems (11) and (12) for all
measured data k =1,K lead to such interim
conclusions:

e if polynomial exponents of numerous arguments
are close to 1, then approximation basis found
using the reduction of the polynomial exponent
while solving the problem (11), (12) for the values
of an individual measurement K (1)

ke[1, K] provides an acceptable approximation for
all measurements k =1, K .

e if the exponent of the approximation polynomial
differs greatly from 1 (AR > 1.5, or AR < 0.5), the
reduction of the approximation polynomial
exponent for each measurement leads to obtaining
different approximation bases. This does not lead
to substantial improvement of the approximation
accuracy (10) and mostly makes the accuracy of
the expression (12) worse.

From the results of these computational experiments,
it can be concluded that to restore the ionization field, it
is advisable to use the polynomial (10) with the
exponent R = 1 and multiplier A that is slightly less
than 1. For other conditions, we need substantial costs
determine the

for computational resources to

approximation basis and coefficient c:‘ for each of

the measurements (k = [, K ) separately.

5. Results of the Experimental Restoration of
the Changes in the Atmosphere lonization

To experimentally determine the changes in the
ionization field in time, we took k = 46 measurements
from 272 days in 2013, namely STEC values with time
interval of 15 sec. during the first 12 minutes from the
beginning of the day that were determined during the
GNSS observations at 17 continuously operating
stations of the ZAKPOS network [12].

For the most measurements (k = {,K ), in case of
the reduction of the approximation polynomial

exponent, the same approximation basis was found.
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The exponents of the polynomial arguments are given
in the Table 1. The full set of coefficients of this
approximation basis is determined using the
parameters R = 1; A = 1.37; | i+j+|+p| < 1. Values of

the approximation coefficients c: determined for a

measurement at the time t; = 0 (the time is defined in the
seconds of the day) are provided in the table as well.
The obtained solutions to the problems (11) and (12)

are the coefficient values Ci(ty) (i= 1,_n; k= I,_K) at
the time t, where n = 6 — number of these coefficients.

Using cubic Hermite spline for interpolation (function
pchip in Matlab), we obtained the approximation
coefficients values for each second. Using the
interpolation by the fifth-degree spline, their continuous
values Cj(t) (te[ty,t] were determined. Fig. 4 shows the
these

common dependencies of approximation

parameters from time.
Fig. 4a-c shows that parameters gradually change

over time. This change depends on angle altitude of
certain satellites and their ascent and descent, namely
changes in number of satellites. Only one parameter
Cs(t) changes relatively very quickly (Fig. 4d). This
indicates that the problem of restoration of ¢j(t) during
te[ty,t] using data (1) to determine the reduced
(regularized) approximation basis common to all

observations k =1,K is incorrect. However, the

above solution shows that the change speed of cs(t) is

limited. This fact confirms a good choice in the
approximation basis for all observations Kk =1,_K

(during all time te[ty,t]).

Table 1 Exponents of the polynomial arguments
determined for the most measurements and the values of the

approximation coefficients ¢ ll for a measurement k = 1.

No Exponent | Exponent | Exponent | Exponent Coefﬁlcient
ox y z r c,

110 0 0 0 7.623044
210 0 0 0.769231 (0.004773
310 0 0.769231 |0 —0.000469
410 0.769231 |0 0 -0.003179

5 10.769231 |0 0 0 -0.010377
6 |0 0 -0.769231 |0 -6.092696

c,(t)

Cllﬂl

c,(t)

W s w0 S0 60 0
(b)

c,(t)

00 g5 400 500 600 700

(©)

x10° e (1)

c.lt)

(d)

Fig. 4 Time dependencies graph of approximation

coefficients c,(t) (a), c,(t) (b), ca(t) (c), cs(t) (d).

The quality analysis of the graphs ci(t) (te[ty,k])
described above is applied to control the adequacy of
the solution to the problem (11), (12) for all k =1,K .

In addition, to evaluate this solution, we applied quality
analysis of the determined ionization distribution in the
points (7). Acceptable solutions to (11) and (12) are
distribution (probability density) of the needed

ionization in the points (7) that has a central maximum
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or is close to even or linear distribution. Fig. 5 shows
common distribution graphs and functions of the
ionization distribution V(X, Y, Z, t;;) determined using
the polynomial (10) in the points (7).

It can be seen that all the restored ionization values
are approximately equal to experimentally measured
ionization values. Fig. 5 also illustrates a common
result of using the approximation basis (see Table 1)
determined in one point (k = 2) to restore ionization in
another point (K = 12). Such quality analysis of

distribution laws for ionization approximation in the
points (7) is applied to all measurements k =1, K .

To restore the change in the ionization field, we need
to determine continuous dependencies of the area
center coordinates (7) X(t), (1), Z.(t) (te[ty,k]) from
time using approximation by spline. Graphs of the
coordinate changes are shown on Fig. 6.

Fig. 6 shows the shifts of the center of the
rectangular area with irregular fluctuations. This can be
explained by the movement of satellites and discrete
division of sub-ionospheric line segment of the beam
from the station to satellite. This indicates that the

ionization field depends on the algorithm parameters.

k=0012

(b)
Fig. 5 Common view of graphs for probability density (a)
and distribution function (b) of the ionization value v(x, y, z,
ty,) restored in the rectangular area (14).
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()

Fig. 6 Time dependency graphs of the center of the
ionization restoration area x(t) (a), y.(t) (b), z.(t) (c).

It should be noted that the area boundaries (7)

change gradually depending on the satellite movements.
Common graphs of change X . (t,)= x{‘:ﬂ_n; ynm(tk):)};m;
20 =200 X8 YW=V 2 (6 =20,
(k =1,K) are shown on Fig. 7.

Extreme values of these boundaries were defined for
the ionization field restoration:

— k — K = k
. =max X . L= . Z . =max Z .
i K] Xmm . Yimin Ke[LK] Yimin . Tmin Tk min

b b b

X = min X

—_ . k . k

k = =

e R Y max kIZ[lll’E] Yimax  Zmax = U0 Z
B

kel,K] ™

b

They describe rectangular area
X€ [Ymin b Ymax] y € [Vmin H Vmax] Ze [Znin ’ 7max] (13)

for which the ionization values during the whole period

of observations te[ty,t] are restored.
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x (1)

“min

min

x_ (1), 100 km

v {t), 100 km

s

(b)

z 0
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“o 100 200 300 400 500 600 700
Ls

©

Fig. 7 Common view of time dependency graphs of the
changes in boundaries of the ionization restoration area:

Xmin(t) (@), Ymax(t) (B), Zmin(t) (C).

Let’s divide the line segments (13) into L-1 segments
and determine the coordinate values for equally located
nodes:

%.9,,2 (4, J,I=1,L). (4

Ionization values in the nodes (14) are computed
using the polynomial (10) with parameters C;(t)
(i = 1,n ), X(1), Ye(t), (1), that depend on time:

v, Y,z, N =D Cp®X Y i)

where: i, j, |, p are the indexes of the polynomial
coefficients. The exponents of its arguments are
determined beforehand based on computational
experiments conducted when solving the problems (11)
and (12) (see Table 1). The common view of graph that
shows the instantaneous value of the ionization field

restored in the nodes (14) is illustrated on Fig. 8. In

formula (15), continuous time functions Ci(t) (j = 1, n ),
Xe(1), Ye(t), Zc(t), are defined using splines. According to
formula (15), we determine the ionization at an
arbitrary time te [t;,t] in the arbitrary point (13). It was
found that most often, the ionization increases with an
altitude and there is a shift of spherical areas with
reduced or increased ionization. Sometimes such areas
stop shifting and start moving in the opposite direction
and mix. Restoring the spatial dynamics of ionization
(15) models complex processes of electric charge
movements in the ionized air.

The described method is based on the interpolation
of the coefficients of the polynomial from numerous
arguments (10). It can be used for data in (8) and (9)
that leads to the same reduced approximation basis.
This method is described briefly in the algorithm at the
end of the article (see chapter 5).

Using this algorithm, the results of the ionization
field restoration were obtained. In particular, this
algorithm was applied with the following parameters:
number of points on the beam from the station to
satellites N = 3; number of points between the points
on different beams M = 1. With such parameters in the
expression (11), the number of approximation nodes
exceeds 55 thousand. Number of nodes along the area
boundary of the ionization restoration is L = 20. Using
this value, the number of minimization nodes of the

z 100 km

v, 100 km 5

Fig. 8 Graphs of the ionization dependency from the
spatial coordinates (in 100 km) in the moment (tzg= 555 s).
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derivative by the polynomial from numerous
arguments in (12) is 9261. An increase in the
above-mentioned  parameters causes severe
computation complications in problems (11) and (12)
and does not improve the accuracy of its solution.
Statistical characteristics, that describe 46 results of
the solution to the problem (11) and (12), (k = l,_K ,
K = 46), are provided in Table 2.
This table shows such characteristics:
e standard deviation (SD) of the
approximation error in 46 results of the problem

(11);

e SD of the relative approximation error in 46

absolute

results of the problem (11);
e  average ionization in the approximation nodes (8)
computed for 46 moments in observation from

polynomial (10);

e average ionization in the approximation nodes
(experimental values from 46 observational
moments) (9);

e average relative approximation error by module
for 46 solutions to the problem (11).

For these characteristics, such parameters were
computed: the smallest, largest and average value,
median, distribution mode, standard deviation of the
accuracy identifier as a set of its 46 values. The first
two rows of the last column show the standard
deviation of the SD of 46 approximation problems (11).
These parameters describe the accuracy of application
of common approximation basis (see Table 1) in order
to restore the changes in the ionization field in time.

Table 2 Statistical characteristics for 46 results of the solution to the problem (11) obtained using common approximation

basis.
Parameters
Name of identifier
3;:116 smallest The biggest value |Average value| Median |Distribution mode SD
SD of the absolute approximation | 35, 14652 14198 1.4226 13892 0.016779
error in (11)
SD of the relative approximation | 1507 0.15737 0.15247 | 0.15230 0.15017 0.001354
error in (11)
Average  ionization in  the
approximation nodes (8) computed 5.7050 5.8206 5.7377 5.7354 5.7050 0.021957
from polynomial (10)
Average ionization in the
approximation nodes ®), 5.7049 5.8206 5.7377 5.7352 5.7049 0.021971
experimental values (9)
Average relative ~approximation| ;554 0.22512 021967 | 0.22016 0.21556 0.002148
error (11) (by module)

In particular, Table 2 shows that the average values
of the experimental and model (obtained from
approximation) values are close for all measurements.
The relative accuracy of the problem (11) solution for
an individual measurement is approximately 21% (with
dispersion 0.21% for all measurements). The standard
deviation of this error is 15% (with dispersion 0.13%
for all measurements). This means that using the
common approximation basis, we obtained ionization
approximation (11) with relatively low accuracy (21%)

but the error of such approximation varies a little for

each of the measurements. This proves the efficiency
of applying the common approximation basis for
the

ionization when using the polynomial from numerous

regularized approximation of atmosphere
arguments with coefficients dependent on time. It
should be noted that before we added a new argument
to the polynomial (10), the approximation accuracy
was worse. Other ways to expand or change the
approximation basis (described above) do not influence

the accuracy parameters for ionization field restoration.
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6. Algorithm of the lonization Field Change
Restoration Using the Approximation of the
Change in Time of the Coefficients of the
Polynomial from Numerous Arguments

(1) Obtain the coordinates of the stations (la),
satellites (1b) and STEC values (1c¢).

(2) Determine the altitude of the sub-ionospheric
point.

(3) Select a number of points N on the beams from
the stations to satellites located lower than the

sub-ionospheric point.
(4) Compute (2) the coordinates XIJ' yi'j‘, , Tukl of

the points located on the beams between the stations

and satellites lower the sub-ionospheric point

Gi=L,n, 5 j=1,m_ s 1=1,N; k =1,K ).

(5) Compute (3) the value V”kl in the points (2)

(located on the beams between the stations and

satellites lower than the sub-ionospheric point) that are
defined instep 4 (i=1,n_; j=Lm; [=1,N; k=LK).

(6) Select a number of internal nodes located on the
line segments between two points on the beams from

stations to satellites.

(7) Compute coordinates of internal nodes XIJIOq ,

y”pq , qu (4) that lie on the segments between two

points on the beams from stations to satellites

(r=0,M; pOe[LN]; i=L,n; j=L,m k=1,K)

vkr

(8) Using interpolation determine V iip

q (5) in the

points defined in steps 6 and 7 (j =

p.ge[1,N];

(9) Determine boundaries X:nn ,

IL,n s j=1,m.;

r=1,M; k=1K).

k k
ymin ? Zmin ’

K K (6) of the rectangular spatial area

max ymax ’ Zmax

X

with the points Kl.‘l , Vi‘Jfl , (2) and defined values

Ij|

Vi @ G=1,n: j=1,m_: 1=1,N) for each

measurement (kK = 1, K ).

(10) Select a number of points L where the spatial
area is divided and limited by the boundaries (6) set in

step 9.
(11) In the rectangular area defined in step 9

determine the coordinates of the equally located points
xS ys, 7 (DG, =1, LL).

(12) Join the sets of the nodes coordinates on the
beams from stations to satellites (2) and on these beams
(4) and sets of the correspondent known values (3), (5)

®), 9
(a=1,A ) that is experlmentally defined discrete

into a combined set X ya s ,

functional dependency of the ionization from spatial
coordinates for a measurement k (K = 1L,K ).

(13) Determine the best approximation basis
common for all measurements k =1,K from the

results of the problems (11), (12), exponent reduction
of the polynomial from numerous arguments (10) [3,
4].

(14) Solve the problem (11), (12) for all
measurements k = 1,_K using approximation basis
determined in step 13.

(15) Based on the results from step 14, using the
interpolation by spline, define coefficient dependencies
Ci(t) (i =1,n) of the polynomial (10) from time and
dependency of the center coordinates X¢(t), yc(t), Z¢(t) of
the rectangular area (7) from time (te[ty,k]).

(16) Make a quality analysis of changes in the
polynomial (10) coefficient ci(t) (i =1,n ) in time
(te[ts,]).

(17) Define approximation errors in the problem (11)
for all measurements.

(18) Make a quality analysis of the probability
density (and distribution function) of the restored
ionization value v(X, Yy, z, t) in points (7) in the
rectangular area (6). If these distributions have central
maximum or are approximately even or linear, and if
approximation errors in the problem (11) for all
measurements are within acceptable limits then the
determined approximation basis (step 13) can be

regarded as acceptable. Otherwise, go to step 3.
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(19) Define the [Knina Ymax] >

[Vmin, Vmax], [fmin’ fmax] (13) of the rectangular

area (14) where the approximation value of the
k=1,K is

boundaries

ionization for all measurements

computed.
(20) Determine the coordinates of the equally

located points  X;, ¥;,Z, in the rectangular area defined

instep 18 (i, j,l = 1,_|_).

(21) Using the coefficients Ci(t) (i = 1,n ) in the
polynomial (10) and the center coordinates Xc(t), Yc(t),
Z.(t) of the rectangular area (13) that depend on time,
determine the ionization value v(X, Yy, z, t) at an
arbitrary time te[ty,t] in the arbitrary point of the area
(13).

(22) To represent the results of the ionization
restoration graphically, compute the ionization values

in the points (14), ie., compute V(X;,Y¥;,7,t)

(i, j,1 =1, L ; te[ts,t)).

7. Conclusion

The resulting error indicators show that the
developed algorithm gives consistent results for
ionization field restoration that do not depend on the
ionosphere state, satellites positions and changes in
number of stations in the network wused for
computations. Instant accuracy of the ionization field
restoration is acceptable for our problem. To improve
the described method, we need to conduct research to
explain the structure of the approximating polynomial
and search for additional computation tools to increase
the approximation accuracy in the observational nodes
and prevent rapid change of the approximating
polynomial beyond these nodes.
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