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Abstract: Syngas cleanup is a major challenge in any coal or biomass gasification application. A modified syngas cleanup process is 
under development to improve syngas from low rank coals for CTL (coal to liquids) applications. Novel steam reforming catalysts 
were developed to convert tars and light hydrocarbons and decompose ammonia in the presence of syngas contaminants such as H2S 
(< 500 ppm). Process goals are to improve syngas yield and H2:CO ratio while reducing water gas shift and downstream gas cleanup 
requirements. Laboratory reforming experiments were focused on developing information to support a techno-economic analysis 
using TRIG (transport reactor integrated gasifiers) or LURGI gasifiers. A CTL with carbon capture model was developed to compare 
the economics of the new process including the catalytic steam reforming to DOE (Department of Energy) baseline CTL. Reforming 
catalysts were developed that had high methane, tar, and ammonia conversion in presence of 90 ppm H2S. Higher concentrations of 
H2S affected conversion of methane but catalyst performance was fairly stable for the duration of testing. Results of modeling 
indicated that economics of the new process were nearly identical to the baseline CTL case, but greenhouse gas emissions for a given 
production of fuels were approximately 50% lower. 
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1. Introduction 

Coal gasification is a complex, multi-step process 

that uses steam with air or oxygen to convert solid 

coal into its gaseous derivative components: H2, CO, 

H2O, CO2, CH4, and contaminants. Recent advances 

in carbon capture have made it possible for CTL 

products to have comparable CO2 emissions with its 

petroleum counterpart; with the potential to be even or 

below those levels when the feed is mixed with small 

amounts of biomass [1]. 

There are three main classifications of coal 

gasification technologies that are commercialized 

today: fluidized-bed, fixed-/moving-bed, and 

entrained-bed [2]. Fluidized-bed gasifiers use 

relatively narrow distribution of small particle sizes of 

coal that is fed into an inert bed which maintains a 

                                                           
Corresponding author: Andrew Lucero, manager, process 

research, research fields: thermochemical conversion of coal, 
biomass, or other feedstocks to energy, fuels, or chemicals.  

This work was funded by the U.S. Department of Energy 
under award No. DE-FE0012054. 

uniform gasification temperature. The fluidized bed 

operates at lower temperatures and generally requires 

more reactive, low rank coals to achieve high 

conversions [3]. Fixed-bed gasifiers use preheated 

lumped coal that is fed from the top of the gasifier 

where air or oxygen and steam are fed from the 

bottom. Fixed-bed gasifiers consume lower amounts 

of O2 but produce more tars and methane [3]. 

Entrained-bed gasification uses pulverized coal or coal 

water slurries under high temperatures 

(1,500-1,900 °C) which requires higher O2 feed rates 

to maintain the reaction [3]. Transport reactor 

gasification (e.g., TRIG) is a recently developed 

gasification technology that was designed specifically 

for converting low-rank coals with low gas-solid 

transfer resistance and high gas-solid contact [2]. The 

TRIG system uses a limestone sorbent that is co-fed 

with the coal into the gasifier to remove the majority 

of the sulfur in situ down to levels as low as 100 ppmv 

which is substantially lower for the raw gas relative to 
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other gasification technologies [3]. The temperature of 

operation is moderate and fairly high carbon 

conversion efficiencies of 97% to syngas are possible.  

A major challenge in any coal gasification 

application is gas clean-up which represents 36-41% 

of the total plant cost when including the secondary 

application such as: SNG (synthetic natural gas), 

coal-to-methanol, or IGCC application [3, 4]. 

Additionally, the syngas derived from coal is typically 

lean in H2 relative to distillate fuels which have 

H2:CO ratio of approximately 2:1. 

The goal of this research was to develop and 

demonstrate potential economics of a high 

temperature catalytic steam reforming process that can 

withstand the severe contaminant conditions of a 

near-raw syngas derived from low-rank coal 

gasification with the objective to increase the yield 

and H2:CO ratio while eliminating methane, ammonia, 

and tars from the process. Research was performed at 

the lab-scale using simulated low-rank coal syngas 

that contains methane, ammonia, as well as a tar 

surrogate to test the conversion efficiency and catalyst 

longevity. 

Commercial application of steam reforming 

generally involves production of hydrogen. In 2010 

there were 12 trillion standard cubic feet of H2 

produced annually, primarily from steam reforming of 

natural gas. Typically all sulfur species in the natural 

gas are converted into H2S via reduction or hydrolysis, 

then removed H2S with ZnO scrubbing or other 

processes prior to methane/steam reforming over a 

Ni-based catalyst supported by Al2O3 [5]. This 

reaction is typically carried out at temperatures over 

700 °C, is thermodynamically more favorable with 

higher ratios of steam to carbon and at lower pressures 

[5]. Several studies have looked at novel methods for 

steam cracking of tar using Ni supported on dolomite 

[6, 7]. At 800 °C a nickel-ceria perovskite was shown 

to have favorable steam reforming activity of methane 

with high selectivities towards CO and H2 production 

[8]. Other studies have shown Ni hexaaluminates as a 

high-temperature steam reforming or partial oxidation 

catalyst with relatively high carbon deposition 

resistance, especially in the presence of steam [9, 10].  

The use of these catalysts faces several challenges; 

for example activity loss due to coking, thermal 

sintering, sulfur poisoning and metal sintering due to 

sulfur attack. The sulfur contaminants in hydrocarbon 

streams are present as H2S or are converted to H2S 

during high temperature reforming. Other forms of 

sulfur such as mercaptans and thiophenes also poison 

the catalyst. Most commonly used nickel oxide 

catalysts undergo rapid deactivation in presence of 

sulfur to unacceptable low level of methane or 

hydrocarbon conversion. Platinum and other noble 

metal catalysts also show high activity, and have 

slightly better susceptibility to sulfur, however, the 

rate of deactivation is still high. Also, platinum group 

catalysts are relatively very expensive to be used for 

large scale reforming applications. 

Few attempts have been published for reforming 

catalysts developed to tolerate sulfur compounds in 

gaseous feeds. NexTech developed a magnesium 

nickel silicate catalyst that was tolerant to 10-20 ppm 

H2S in the feed [11]. A nickel containing hydrotalcite 

dry reforming catalyst is described in US patent 

6,953,488 [12] with 47% to 76% conversion of 

methane with a “low concentration of H2S in the feed,” 

but no results for steam reforming are presented. 

2. CTL (Coal to Liquids) Process under 
Development 

Fig. 1 shows a process that converts low-rank coals 

(i.e., sub-bituminous and lignite) into distillate, 

hydrocarbon fuels using four main processing steps: 

gasification, clean up, syngas upgrading, and 

Fischer-Tropsch synthesis. This process begins by 

feeding steam, low-rank coal, and oxygen into a 

gasifier (e.g., TRIG or Lurgi’s FBDB (fixed-bed 

dry-bottom)) to produce a raw syngas which contains 

hydrogen, carbon monoxide, methane, carbon dioxide; 

trace contaminants: acid halides, mercury, phosphorous, 
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Fig. 1  Simplified flow diagram of CTL including new reforming process.  
 

antimony, cadmium, hydrogen selenide, and arsine 

(AsH3); in addition: tar, particulates, ammonia, and 

sulfur (H2S, COS) that are at or near percentage levels. 

Removing these contaminants is required to meet 

emission regulations for power generation as well as 

to prevent catalyst deactivation in the FT 

(Fischer-Tropsch) reactor. If a TRIG gasifier is used it 

would also require feeding limestone sorbent into the 

gasifier and remove the majority of sulfur from the 

syngas. 

An acid halide sorbent is fed to the raw syngas prior 

to the hot gas filter which removes the remaining 

particulates and spent sorbent. Following hot gas 

filtration is a high temperature (> 900 °C) catalytic 

steam reforming step to convert the ammonia, 

methane, and tars into syngas which increases the 

H2:CO ratio and eliminates these hydrocarbon and 

ammonia by-products from the syngas. Development 

of a catalyst that is stable under the severe 

deactivating conditions of a near-raw low rank coal 

(or coal-biomass) syngas containing tars, ammonia 

and methane is the focus of this proposed project. The 

high steam feed rates to the gasifier to produce higher 

H2:CO ratios in the raw syngas also result in higher 

CH4 formation which are produced on a 3:1 ratio in 

this reaction. Catalytic partial oxidation of light 

hydrocarbons produced upstream (i.e., 

Fischer-Tropsch derived CH4 and LPG) will further 

increase the H2:CO ratio of the syngas; additionally, 

the heat generated from the partial oxidation step will 

be sufficient to maintain the temperature required for 

steam reforming which is endothermic. After cooling, 

the syngas can be subjected to an optional sour shift if 

needed for H2:CO ratio adjustment. It is then 

desulfurized and further cleaned using conventional 

technologies followed by amine-based CO2 capture. 

Optionally the gas could be treated with warm gas 

cleanup technology such as that being developed by 

Research Triangle Institute under a cooperative 

agreement with the DOE to investigate the optimum 

sorbent-condition combinations. This technology has 

been successfully tested using a slip stream at the 

Eastman Chemical Plant’s coal-to-chemical gasifier in 

Kingsport Tennessee [13]. The H2:CO syngas is then 

fed to a FT reactor, upgrading, and separation section 

which maximizes the yield to liquid transportation 

fuels. The light hydrocarbons are recycled to the  

POX (partial oxidation) reactor unit to provide high 

quality heat for the steam reforming and to further  

increase the overall yield to liquid transportation fuels.  
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Table 3  Summary of lifecycle CO2 emissions.  

  Base case (kg CO2e/barrel) Modified case including POX/reformer (kg CO2e/barrel) 

Upstream PRB Coal 100.0 73.6 

PRB coal gasification 1,316.6 969.0 

Sequestered CO2 -754.0 -598.0 

Transportation of fuel 2.6 2.6 

Electricity -4.4 0.6 

Produced fuel -436.3 -436.3 

Combustion of fuel 436.3 436.3 

      

Total emissions 660.8 447.8 
 

methane slippage from the gasifier to downstream 

nodes. This additional CO2 produced was then 

captured and sequestered improving the carbon 

capture rate for the modified case to over 90%, while 

the basecase was not able to match this performance 

metric. The conversion of light hydrocarbons and tars 

to H2 and CO by the POX/reformer improved the 

overall coal conversion efficiency and reduced the 

amount of coal required to produce 50,000 bpd of FT 

liquids. However, without the light hydrocarbons in 

the tail gas the energy content and volume of the tail 

gas was reduced which meant there was insufficient 

power being generated and the modified case became 

a net importer of electricity compared to the basecase 

which produced and excess of power.  

Therefore, several key systems in the modified case 

had to be resized. The size of the air separation unit 

and carbon dioxide capture and sequestration 

equipment were all increased in size, while the coal 

feeding and power generation equipment were 

reduced in size relative to the base case. With the 

addition of the POX/reformer and the changes in 

equipment size the modified case had a slightly higher 

capital equipment cost, but lower O/M costs resulting 

in a 5.4% increase in per barrel cost for the modified 

case as seen in the table above.  

Given that the liquid production for both cases 

remains the same, the downstream contributions are 

equivalent. However, the modified process provides a 

significant advantage over the basecase in feedstock 

avoidance. The upstream emissions associated with 

the coal, the emissions released from the power 

generation system, and the lower carbon capture rate 

increase all contribute to a 47.5% higher CO2 

equivalent (CO2e) life cycle emission rate for the 

basecase when compared to the modified case. The 

breakdown of the contributing factors can be found in 

the table above. 

6. Conclusions 

A process is under development to improve syngas 

from low rank coals for CTL applications. Novel 

steam reforming catalysts with strong resistance to 

H2S poisoning were developed and demonstrated for 

up to 40 hours. Although overall economics for the 

process are not competitive compared to current oil 

prices, a techno-economic analysis developed for the 

process indicated near equal economics compared to 

baseline CTL processes with a large decrease in 

greenhouse gas emissions for equivalent FT liquids 

yields. 

7. Future Work 

Further tests of the catalysts developed will be 

conducted for extended periods of time, ideally 

thousands of hours. Techno-economic modeling will 

be expanded to hybrid cobalt-zeolite catalysts that 

minimize or eliminate produce upgrading for normal 

FT processes.  
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