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Abstract: Coordinates are basic needs for both geospatial and non-geospatial professionals and as a result, geodesists have the 
responsibility to develop methods that are applicable and practicable for determining cartesian coordinates either through 
transformation, conversion or prediction for the geo-scientific community. It is therefore necessary to implement mechanisms and 
systems that can be employed to predict coordinates in either two dimensional (2D) or three dimensional (3D) spaces. Artificial 
Intelligence (AI) techniques and conventional methods within the last decade have been proposed as an effective tool for modeling 
and forecasting in various scientific disciplines for solving majority of problems. The primary objective of this work is to compare 
the efficiency of artificial intelligence technique (Feed Forward Back propagation Neural Network (FFBPNN)) and conventional 
methods (Ordinary Least Squares (OLS), General Least Squares (GLS), and Total Least Squares (TLS)) in cartesian planimetric 
coordinate’s prediction. In addition, a hybrid approach of conventional and artificial intelligence method thus, TLS-FFBPNN has 
been proposed in this study for 2D cartesian coordinates prediction. It was observed from the results obtained that FFBPNN 
performed significantly better than the conventional methods. However, the TLS-FFBPNN when compared with FFBPNN, OLS, 
GLS and TLS gave stronger and better performance and superior predictions. To further confirm the superiority of the TLS-FFBPNN 
the Bayesian Information Criterion was introduced. The BIC selected the TLS-FFBPNN as the optimum model for prediction. 
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1. Introduction  

In surveying and mapping, one of the primary tasks 

for geodesist and surveyors is to determine precise 

coordinates for accurate positioning on the Earth 

surface. These coordinates may range from the global 

to local sphere and are pertinent for a variety of 

applications in both applied science and geodesy. Over 

the years, the issues of precise point positioning for 

geodetic applications have become a real, persistent 

and serious problem facing the developing countries 

like Ghana, calling for pragmatic solutions. The 

increasing use of the Global Navigation Satellite 

System (GNSS) such as Global Positioning System 

(GPS) has significantly advanced the expansion of 
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global application of geodetic surveys in all areas of the 

globe, even though many countries, for example, 

Ghana are still yet to fully utilize the full potentials of 

GPS. 

Ghana is one such post-colonial countries’ where the 

use of non-geocentric coordinate system established 

through conventional techniques of surveying for 

national mapping still persist [1, 2]. Moving along with 

the disheartened political, economic and socio-cultural 

trend, there are numerous challenges to incorporating 

GPS derived coordinates into the Ghana National 

coordinate system, thus, demanding the determination 

of transformation parameters by scaling, translation 

and rotation. To solve this, 3D similarity 

transformation models of three translations, three 

rotations and one scale factor [3, 4] are used to estimate 

the transformation parameters. Several transformation 

models have been put forth to estimate transformation 

parameters for geodetic reference network for 
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countries [5-8] such as Ghana. The most commonly 

used among these models in Ghana are the conformal 

methods of Bursa-Wolf, Molodensky-Badekas and 

Helmert similarity [8-10]. It is worth noting that the 

first step in applying any of the above-mentioned 

conformal similarity transformation models in Ghana 

is the conversion of the geodetic data of common 

points into cartesian rectangular coordinates using 

Bowring’s algorithm. 

Although Bowring’s algorithm [11-15] has 

established a forward computation for transforming 

geodetic coordinates to cartesian coordinates, it will 

take some time before this can be applied directly in 

Ghana due to the non-geocentric coordinate system. 

Therefore, for local application to be realized, the 

iterative Abridged Molodensky transformation model 

[16, 17] must be applied to the geographic coordinates 

of common points on the War office ellipsoid [10]. 

This will then be used to determine the approximate 

change in ellipsoidal heights which are then used to 

calculate the ellipsoidal height for the local geodetic 

network before Bowring’s equation can be applied to 

the data. The reason is because the Ghana geodetic 

reference network established through classical 

methods of surveying is referenced on the War Office 

ellipsoid with data in latitude, longitude and 

orthometric height without the existence of ellipsoidal 

height [2, 8, 9, 18]. 

The above prevailing situation has hampered the use 

of GPS effectively thereby creating inconsistencies in 

the transformation parameters derived among 

researchers in Ghana. As a result, users from all related 

disciplines adopt different techniques in the 

post-processing of the GPS observational raw data and 

these generate a lot of uncertainties in the use of the 

GPS data from different sources [9, 10]. Also, the lack 

of geoid model for Ghana War Office datum has also 

contributed to the inconsistencies in the transformation 

parameters determined by researchers in Ghana. These 

have lead to non-existence of standards to regularize 

GPS usage in its domain, even though it is 

acknowledged that the use of GPS for geodetic surveys 

is on the increase in Ghana and around the world. 

Efforts have been made by researchers [2, 8-10, 18, 

19] in Ghana and foreign agencies to determine a 

suitable method and transformation parameters for the 

Ghana Geodetic Reference Network. No decision has 

been reached as to which of them is the selected 

technique and no doubt this is an area where 

deliberations will continue for some time to come. 

Consequently, an optimum set of transformation 

parameters between the War Office datum and WGS 

84 datum does not exist; this makes it difficult for 

Ghana to utilize the massive potential of GNSS 

services. In order to establish compatibility in data 

obtained from GPS measurements correctly and 

effectively in Ghana, it is necessary to determine 

appropriate transformation parameters that relate the 

coordinates in the War Office system to the WGS 84 

system using relevant transformation models. In view 

of the above development, it can be inferred that the 

inconsistencies in the parameters determined among 

researchers is further creating distortions in the local 

coordinates generated from these parameters. 

Therefore, there is a need to model out distortions 

within the local coordinates in our local geodetic 

system after applying the national transformation 

parameters.  

Conversely, there exist physically based numerical 

methods that can serve as practical alternative in 

modelling out these distortions by way of converting 

geodetic data to cartesian coordinates for a local 

geodetic network by way of prediction to a tolerable 

degree of accuracy and precision. For example, Ref. 

[20] applied linear regression (OLS) to find a 

relationship between global and cartesian coordinates. 

They concluded that the proposed linear regression 

models were suitable for predictions at 95% confidence 

interval and do not violate any of the statistical 

assumptions of a linear model. In Ref. [21] linear 

regression was also applied for two different regions in 

the Ondo State, Nigeria whereby their respective 
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results were compared. It was established by the 

authors that distances between random distributions of 

points can be a factor when developing regression 

model for local coordinate prediction. Also, Ref. [22] 

developed regression models for coordinate prediction 

at Makkah Metropolitan area. The simplicity and 

accuracy of the regression models were considered. 

Moreover, the authors’ proposed that these regression 

models could be used for surveying and mapping 

activities such as GIS, data collection, engineering 

surveying and topographic mapping based upon their 

prediction capabilities. 

Other numerical methods applicable for predicting 

local cartesian coordinate is the Total Least Squares 

(TLS) and General Least Squares (GLS). It is worth 

mentioning that several studies have been carried out 

by researchers into TLS in 3D coordinate 

transformation and in robotics [23-26]. Although 

extensive applications of linear regression (OLS) and 

TLS has been carried out, limited literature is available 

in geodesy technical papers on the application of TLS, 

GLS for two-dimensional (2D) local cartesian 

coordinate prediction. 

This study also considered the artificial intelligence 

technique of Feed Forward Back Propagation Neural 

Network (FFBPNN) as an alternative to predicting 

local cartesian coordinates from global coordinates 

within the local geodetic system in Ghana. It must be 

emphasized that artificial intelligence techniques has 

been widely used in solving problems in geodesy. For 

example, researchers like [27-30] applied the back 

propagation and radial basis function neural network as 

an alternative to 3D coordinate transformation by 

comparing with conformal similarity models. 

Moreover, several research works have been carried 

out using artificial neural network (ANN) for GPS 

height conversion. This can be found in [31-34]. Yet, a 

study on the integration of conventional technique into 

ANN to improve the efficiency of the model developed 

has not been comprehensively investigated for 

planimetric coordinate predictions. 

Therefore, this study focused on Ghana as a case for 

application of the conventional methods (OLS, GLS, 

and TLS), FFBPNN and a proposed hybrid approach of 

TLS-FFBPNN for the study area. The hybridized 

model yielded the most precise coordinate values in 

good agreement with the measured data. 

2. Study Area 

Ghana is a country located in the Western part of 

Africa and is bordered by Cote D’Ivoire to the West, 

Togo to the East, Burkina Faso to the North and the 

Gulf of Guinea to the South. The country has a 

239,460 km2 land mass generally consisting of low 

plains [35] with 2,093 km of international land 

borders. Lying just above the equator, Ghana has a 

tropical climate with mean annual temperature ranging 

between 26 °C and 29 °C but temperature are 

generally higher in the North than in the South [35]. 

The country is divided into ten administrative regions 

as shown in Fig. 1 below. 

This study covers the western administrative region 

in Ghana (Fig. 1). This region have almost all the 

natural resources such as gold, bauxite, manganese, oil, 

timber, cocoa and many others found in the country 

and thus, are of high economic value. It also forms 

part of the ongoing newly established geodetic 

reference network referred as the Golden Triangle 

[19]. 

 

 
Fig. 1   Map of Ghana showing the study area. 
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3. Data 

Primary control point data of global geodetic 

coordinates (, ) were collected by field work using 

the Trimble GPS receivers with the static GPS 

surveying technique adopted. Their corresponding 

existing cartesian coordinates (E, N)  in the Ghana 

local coordinate system were acquired from a mining 

company’s database in Ghana. A total of 200 

above-mentioned datasets were used in this study to 

develop the prediction models and obtain an 

approximation of the relationship between (, ) and 

(E, N) respectively. An independent datasets of 26 

was then applied to test the model prediction accuracy 

level. 

4. Methods 

Normally in applied numerical problems in 

engineering and in the field of sciences, it is essential 

to fit a surface or curve to a set of data points with 

known coordinates. The most commonly used method 

is the Ordinary Least Squares. Its aim is to minimise 

the sum of squared errors of only one of the variables 

but not of the others [36]. However, in surveying and 

mapping, all observed data (coordinates) may suffer 

from errors. Fortunately, there exist numerical 

techniques that incorporate errors in both coordinates 

in their respective procedures. Two of such methods 

namely, Total Least Squares and General Least 

Squares were considered in this study. Artificial 

intelligence technique namely, Feed Forward Back 

Propagation Neural Network was also applied. Finally, 

a hybrid model was proposed. 

4.1 Ordinary Least Squares  

The Ordinary least Squares (OLS) mathematical 

model for fitting a straight line to points is of the form 

y = mx+c where x and y are the coordinates of a point, 

m is the slope of a line, and b is the y intercept at x = 0. 

The assumption in the OLS is that residuals are 

applied only to the observation vector (y coordinate) 

even though both observations (x, y) contain errors. In 

an ideal situation, all coordinates points must lie on a 

least squares line if they are truly linear and no 

observation errors exist. On the other hand, this is 

seldom the case in that (1) the observations contain 

errors; (2) the functional model could be a 

higher-order curve, or both (Ghilani, 2010). If the 

desirable best-fitting straight line is found for the data, 

residuals are added to the least square equation. Hence, 

accounting for the errors in the observation vector (y). 

Assuming four control points A, B, C, and D, its 

observation equation in least squares term can be 

written as 

 

The above observation equation contains two 

unknown parameters, m and b, with four observations. 

Their matrix representation in the least squares form is 

AX = L+V
 
where 

, , , 

 

The equation is then solved using the least squares 

method X = (ATA)-1ATL and the observational residuals 

are calculated using V = AX-L. 

4.2 General Least Squares  

The General Least Squares (GLS) postulates that 

both observed variables (x and y) contain errors since 
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they are observational data. Yet in the case of the OLS 

mathematical model, the residuals are applied only to 

the y coordinate. This clearly shows the deficiency in 

the OLS model by failing to account for the error in 

the other observed variable (x coordinate). Assuming 

that four control points A, B, C, and D were surveyed 

on the field, its observation equation in GLS can be 

written as [37] 

 

where Vx 
and Vy are the residuals of the coordinate 

points (x, y), m is the slope of the line and b is the 

intercept. The above equation having the unknown 

parameters is nonlinear and therefore requires 

linearization.  

In this study, Taylors Series for linearizing 

nonlinear equations was applied. The resulting 

equation for the four assumed control points after 

linearization can be written as: 

 

These equations can be represented in matrix form 

as: 

 

Where

, , , 

 

In solving for the general least squares, the 

unknown parameters dm and db is estimated using the 

relationship; X = (JTWeJ)-1JTWeJ. Where We is the 

equivalent weight matrix given us; We = (BBT)-1 and 

 is the covariance matrix of the observations. The 

observational residuals are estimated using the 

equation V = BTWeVe and Ve = JX-K
 
is the equivalent 

residuals. It should be noted that GLS is a nonlinear 

equation system and therefore requires iteration until 

convergence is achieved. 

4.3 Total Least Squares (TLS) 

The Total Least Squares (TLS) is a technique that is 

appropriate when there is an existence of errors in 

both the observation vector and in the data matrix [38]. 

In the plane, the main goal of TLS is to determine a 

line that minimises the sum of the squared distances 

from that line to a given data point in the plane. The 

total least squares method adopt the symmetric form 

of the equation of a line. Thus, the distance d from a 

point say (p, q) to a straight line will have the equation 

rx+sy-c = 0 that acknowledges the following formula 

[36]: 
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If the line passes through a point , 

then . Therefore the equation becomes

. So, with given data 

points , the 

problem of the TLS consists of determining a line, 

defined by a point  on the line and by 

normal vector , which minimises the sum D of 

the squared distances given as

. 

It must be known that the line of total least squares 

passes through the centroid of the data points. 

4.4 Feed Forward Back Propagation Neural Network 

(FFBPNN) 

Artificial neural networks (ANNs) are 

computational standards based on mathematical 

models inspired by the structure, operation and 

behaviour that imitate the human brain of biological 

neurons in the nervous system. These networks 

consist of highly interconnected neurons (Sordo, 2002) 

via links of variable synaptic weights (Handhel, 2009) 

that process information through an interaction with 

the environments. Generally, there are different types 

of ANN based on their architecture. The most popular 

network architecture in use today for engineering 

applications is the Feed Forward Back Propagation 

Neural network (FFBPNN) (Haykin, 2007). This 

network consists of three layers; input layer which act 

as control variables having an influence over the 

desired output of the neural network and an output 

layer giving the internal computation results. Between 

these two layers exist another layer not evident from 

the outside called the hidden layer liable for executing 

intermediate calculations (Konaté, 2015). It is 

pertinent to note that the efficiency of a neural 

network and its simplicity depends on the appropriate 

number of neurons applied in the hidden layer.  

The number of hidden neurons is determined by 

trial and error procedure depending on the 

characteristics of the problem, training samples size 

and requirement. This is due to some of these factors; 

the problem under consideration, the choice of neural 

network structure and proposed theories that are yet to 

be accepted universally to clarify the number of 

hidden units needed to approximate a given function. 

In this study, the optimum number of neurons in the 

hidden layer was selected by sequential trial and error 

procedure based on the smallest mean square error 

(MSE). 

The choice for the hidden layer used in this study 

was 1. This decision was based on [43] which further 

corroborate that Feed Forward Back Propagation 

Neural Network (FFBPNN) with one hidden layer 

together with their hidden and output transfer 

functions is a universal approximator of any discrete 

and continuous functions. The hyperbolic tangent was 

chosen as the hidden neurons activation function 

while a linear transfer function was used in the output 

neurons. The hyperbolic tangent can be expressed 

mathematically as 

 

where t is the sum of the weighted inputs. 

For the network training, the objective is to find 

optimal weight connection w* in such a way that it 

will provide estimated outputs that match for each 

example of the desired outputs value. This is a typical 

nonlinear optimization problem, where w* is given as 

[42] 

, 

where w is the weight matrix and E(w) is an objective 
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where n is the number of examples in the training set 

and En(w) is the output error for each example n and is 

defined as 

, 

where ynj(w) and dnj are the calculated and desired 

network outputs of the j-th output neuron for n-th 

example, respectively. Substituting En(w) into E(w) 

gives 

 

In this study, Levenberg-Marquardt algorithm 

(LMA) was chosen to train the neural network 

because it is faster and has more stable convergence 

than the classical gradient descent algorithm. This was 

proven in the work of [44]. The LMA can be thought 

of as a combination of steepest descent and the 

Gauss-Newton method. The algorithm behaves like 

steepest descent method when the current solution is 

far from the correct one. Thus, slow but guaranteed to 

converge. On the other hand, when the algorithm 

approaches the correct solution, it becomes a 

Gauss-newton method. Detailed analysis of the LMA 

is beyond the scope of this study and interested reader 

is referred to [45] for more comprehensive treatments. 

4.5 Concept of the Proposed Method 

Three conventional techniques namely OLS, GLS, 

and TLS were employed in this study. Having 

considered the strengths and weaknesses as well as the 

results obtained for each method the TLS was the 

preferred method to OLS and GLS for the 

hybridization with FFBPNN. Hence, the proposed 

hybrid technique of TLS-FFBPNN was developed. 

The concept is elaborated below. 

(1) First the TLS models were determined for 

Eastings and Northings coordinates respectively. 

However, like in every survey measurements there 

exist random errors after any least squares adjustment. 

This therefore limited the prediction potential of the 

TLS models developed. Also, jackknifing validation 

approach being implemented further show that the 

model is not in good agreement with the measured 

data. 

(2) In order to improve the efficiency of the model, 

the residuals obtained from the TLS adjustment and 

it’s predicted coordinates values was used as a training 

sample in conjunction with the global coordinates in 

the FFBPNN. 

(3) The TLS-FFBPNN hybrid model was then used 

to predict the 2D cartesian coordinates.  

5. Performance Criteria 

The evaluation of the performance of the 

implemented methods was focused on the residuals 

generated from test data by each prediction models 

developed for predicting (E, N) from (, ). In order 

to check the validity of the solutions obtained from the 

prediction models, the following statistical estimation 

accuracy measures were used as a performance 

criteria index (PCI) namely: Mean Square error 

(MSE), Root Mean Square error (RMSE), 

Nash-Sutcliffe Efficiency Index (), Index of 

Agreement (D) and Modified Index of Agreement (D). 

Mathematical representations of the PCIs are given 

by:  

,

,
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. 

where n is the total number of examples presented to 

the learning algorithm, t and o are the observed values 

and predicted values.  is the mean of the observed 

values and  is the mean of the predicted values 

respectively. 

6. Results and Discussion 

6.1 Models Developed 

Different model equations were determined 

between geodetic coordinates (latitude, longitude) and 

cartesian coordinates (Eastings (E), Northings (N)) 

respectively. A total of 200 data points were used to 

form the models. Tables 1 and 2 below present the 

various models developed when OLS, GLS, TLS, 

FFBPNN and TLS-FFBPNN were applied on the 

datasets. 

From Table 1 above, it can be observed that the 

OLS, GLS and TLS models for both 

Eastings-Longitude and Northings-Latitude exhibit a 

positive linear relationship. This indicates that models 

for Eastings and Longitude as well as Northings and 

Latitude all move in the same direction. That is, a unit 

increase in Longitude increases the Easting 

component by 110932.46313 having a constant of 

1499298.88761for the OLS. In the case of GLS and 

TLS, there was a unit increasing of 110932.46220 and 

110933.24579 with a constant value of 

1499298.87783 and 1499307.31603 respectively. The 

same situation was also observed for the Northings 

and Latitude models determined (Table 2). 

The FFBPNN models accepted for predicting 

cartesian planimetric coordinates consist of three 

layers; thus, 1input layer, 1 hidden layer and 1 output 

layer. With reference to Tables 1 and 2, it could be  
 

Table 1  Models determined for eastings and longitude.  

Method Models developed 

OLS 
E = 110932.46313 (Longitude) +
1499298.88761 

GLS 
E = 110932.46220 (Longitude) + 
1499298.87783 

TLS 
E = 110933.24579 (Longitude) + 
1499307.31603 

FFBPNN 2-16-1 

TLS-FFBPNN 4-5-1 
 

Table 2  Models determined for northings and latitude.  

Method Models developed 

OLS N =110325.28210 (Latitude) + 1894.85001

GLS N = 110325.28213 (Latitude) + 1894.85012

TLS N = 110325.52889 (Latitude) + 1893.07289

FFBPNN 2-8-1 

TLS-FFBPNN 4-4-1 
 

seen that the optimum FFBPNN architecture has 2 

input neurons corresponding to 2 selected inputs 

(longitude, latitude), hidden neurons of 16 and 8 with 

1 output neuron of Eastings and Northings 

respectively. However, the proposed hybrid model 

(TLS-FFBPNN) consist of 4 inputs namely (latitude, 

longitude, residuals from TLS, TLS predicted 

coordinates), hidden neurons of 5 and 4 with 1 output 

neuron of Eastings and Northings respectively. 

6.2 Prediction 

A closer look at Tables 3 and 4, it is evident that 

both the OLS, GLS and TLS produced identical 

results which were closely related to the existing data. 

This clearly shows that there is not much difference 

between the three least square approaches. However, 

the predictions from the FFBPNN showed significant 

improvement in the predicted coordinate values 

compared to the least square methods. Nevertheless, 

there was substantial improvement in the 

TLS-FFBPNN model predicted values compared with 

the other methods. 

6.3 Model Performance Evaluation 

The validity of the models developed was further 
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accessed based on the performance criteria index (PCI) 

stipulated in section 5. The MSE and the RMSE values 

for each method in relation to their respective models 

were calculated and the results are shown in Tables 5 

and 6 below. The MSE and RMSE are useful when 

comparing different techniques applied to the same 

dataset. Hence, the MSE and RMSE was used in this 

study as a criterion to measure the goodness of fit of the 

various models developed. The closer the MSE is to 0 

the better the prediction capabilities of the model. On 

the basis of the results (Table 5), the MSE values 

obtained for OLS, GLS, TLS were identical and was in 
 

Table 3  Predicted northing coordinate values.  

EXISTING 
NORTHING (m) 

PREDICTED NORTHING COORDINATES (m) 

OLS GLS TLS FFBPNN TLS-FFBPNN 

796594.03 796593.45 796593.45 796593.45 796593.96 796594.02 

796970.81 796972.31 796972.31 796972.31 796970.71 796970.69 

796147.42 796147.52 796147.52 796147.52 796147.37 796147.43 

796502.50 796502.32 796502.32 796502.32 796502.44 796502.49 

796393.86 796393.87 796393.87 796393.87 796393.86 796393.86 

796213.96 796214.04 796214.04 796214.04 796214.05 796213.98 

795818.81 795818.86 795818.86 795818.86 795818.63 795818.80 

796881.79 796880.96 796880.96 796880.96 796881.32 796881.79 

796963.26 796965.03 796965.03 796965.03 796963.66 796963.13 

796906.12 796905.34 796905.34 796905.34 796906.17 796906.12 

796685.47 796684.69 796684.69 796684.69 796685.68 796685.47 

796100.84 796101.07 796101.07 796101.07 796100.74 796100.86 

795822.14 795822.39 795822.39 795822.39 795822.11 795822.14 

796510.30 796510.05 796510.05 796510.05 796510.56 796510.29 

796823.82 796822.82 796822.82 796822.82 796823.68 796823.81 

796991.42 796991.62 796991.62 796991.62 796991.67 796991.33 

796967.81 796968.89 796968.89 796968.89 796967.81 796967.65 

796685.59 796684.80 796684.80 796684.80 796685.58 796685.56 

796980.24 796980.14 796980.14 796980.14 796980.21 796980.16 

795996.81 795997.03 795997.03 795997.03 795996.75 795996.81 

796666.56 796665.83 796665.83 796665.83 796666.58 796666.56 

796968.35 796969.88 796969.88 796969.88 796968.33 796968.23 

795846.76 795846.88 795846.88 795846.88 795846.58 795846.76 

796375.90 796375.89 796375.89 796375.89 796375.95 796375.90 

796450.97 796450.80 796450.80 796450.80 796450.88 796450.96 

796963.67 796964.81 796964.81 796964.81 796963.64 796963.58 
 

the range of 0.74 m. This means that the models (OLS, 

GLS, TLS) could predict observations within the 

accuracy of 0.74 m. In the case of the FFBPNN, the 

0.14 m obtained shows that the model predictions 

could only deviate from the existing observations by 

not more than 0.14 m. However, the hybrid approach 

(TLS-FFBPNN) produced values that are in close 

agreement with the measured data. This was based on 

the MSE value of 0.000900 m. It could be seen that the 

TLS-FFBPNN gave better prediction capabilities 

among all the methods applied. With reference to Table 

6, the MSE values obtained by each least square 

methods were identical with a prediction accuracy of 

0.6 m. The FFBPNN MSE of 0.03 m shows the extent 
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to which the model fit the observational data. The 

TLS-FFBPNN MSE value of 0.004 m act as a measure 

of how well the model explain a given sets of 

observations. 

The RMSEs shown in Tables 5 and 6 above were 

used in the evaluation process because the RMSEs are 

sensitive to even small errors and can determine the 

quality of a model, making it good in comparing small 

changes between predicted and observed differences in 

models. It is evident that the RMSE (Tables 5 and 6) 

 

Table 4  Predicted easting coordinate values.  

EXISTING 
EASTING 

(m) 

PREDICTED EASTING COORDINATES (m) 

OLS GLS TLS FFBPNN TLS-FFBPNN 

304470.199 304470.842 304470.842 304470.840 304470.277 304470.198 

304623.270 304622.819 304622.819 304622.819 304623.255 304623.271 

304588.533 304587.210 304587.210 304587.209 304587.480 304588.530 

304698.670 304697.255 304697.255 304697.255 304698.130 304698.701 

304815.158 304814.067 304814.067 304814.068 304815.290 304815.183 

305086.147 305085.962 305085.962 305085.965 305086.147 305086.067 

305393.409 305394.687 305394.687 305394.692 305393.547 305393.488 

304590.688 304589.539 304589.540 304589.539 304590.632 304590.674 

304622.893 304621.488 304621.488 304621.488 304622.006 304622.883 

304751.579 304750.281 304750.281 304750.281 304751.668 304751.599 

304893.491 304892.607 304892.607 304892.609 304893.339 304893.485 

305039.514 305039.149 305039.149 305039.151 305039.437 305039.429 

305215.634 305216.086 305216.086 305216.090 305215.000 305215.654 

305393.275 305394.576 305394.577 305394.581 305393.201 305393.264 

304323.571 304324.522 304324.522 304324.519 304323.441 304323.572 

304415.356 304416.152 304416.152 304416.150 304415.553 304415.359 

304251.031 304251.861 304251.861 304251.858 304250.956 304251.041 

304244.736 304245.538 304245.538 304245.535 304244.821 304244.735 

304411.266 304412.048 304412.048 304412.046 304411.416 304411.265 

304494.100 304494.803 304494.803 304494.802 304494.256 304494.098 

304552.457 304552.821 304552.821 304552.820 304553.124 304552.451 

304619.673 304619.713 304619.713 304619.713 304620.166 304619.655 

304512.787 304513.218 304513.218 304513.217 304512.762 304512.791 

304588.770 304588.985 304588.985 304588.984 304588.736 304588.765 

304612.633 304612.613 304612.614 304612.613 304612.536 304612.631 

304637.892 304637.684 304637.684 304637.684 304638.271 304637.880 
 

Table 5  Statistical indicators for easting-longitude model. 

PCI 
METHODS 

OLS (m) GLS (m) TLS (m) FFBPNN (m) TLS-FFBPNN (m) 

MSE 0.746325 0.746322 0.746279 0.139851 0.000900 

RMSE 0.863901 0.863900 0.863875 0.373966 0.030002 

 0.999992 0.999992 0.999992 0.999999 1.000000 

D 0.999998 0.999998 0.999998 1.000000 1.000000 

MID 0.998441 0.998441 0.998442 0.999484 0.999964 
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Table 6  Statistical indicators for northing-latitude model. 

PCI 
METHODS 

OLS (m) GLS (m) TLS (m) FFBPNN (m) TLS-FFBPNN (m) 

MSE 0.575834 0.575885 0.576120 0.026614 0.003570 

RMSE 0.758837 0.758871 0.759025 0.163138 0.059749 

 0.999996 0.999996 0.999996 1.000000 1.000000 

D 0.999999 0.999999 0.999999 1.000000 1.000000 

MID 0.999175 0.999175 0.999176 0.999832 0.999948 

 

obtained for Eastings-Longitude and 

Northings-Latitude models identified the variations in 

observed and predicted values. Visual inspection of 

Tables 5 and 6 shows that the TLS-FFBPNN attained 

the smallest RMSE value among the methods. This 

signify that the TLS-FFBPNN gave better model 

performance than the other methods because the closer 

the RMSE value is to 0 the better the prediction 

accuracy of the model. 

The Nash-Sutcliffe Efficiency Index () is a 

commonly used reliable statistic for measuring model 

efficiency by comparing predicted values to its 

corresponding observed values. The () range from -∞ 

to 1 with improved model performance approaching 1. 

It can be inferred from Tables 5 and 6 that the 

TLS-FFBPNN based model attained the optimum 

value of 1 for both models unlike the FFBPNN where 

0.999999 was achieved for the Easting-Longitude and 

1 for the Northing-Latitude model. This shows that the 

TLS-FFBPNN predictions are closest to the existing 

coordinates hence performing better than other models. 

Nevertheless, the OLS, GLS, TLS and FFBPNN 

indicated good model performance as their respective 

values were approaching 1 (Tables 5 and 6).  

The index of agreement (D) takes values from 0 to 1 

with higher index values indicating that the modelled 

values have better agreement with the observations. 

Observation of Tables 5 and 6 show good model 

performance for all models. However, the 

TLS-FFBPNN and FFBPNN further showed their 

superiority over the least square methods based on their 

respective D values. Although, the D values obtained 

are better indications of the efficiency of the respective 

models, research have shown that relatively high 

values could be obtained even for a poor model fit. 

Also, D is sensitive to extreme values due to the square 

differences in the mean square error in the numerator. 

In addition, the presence of outliers in the dataset may 

lead to relatively higher values of D due to the squaring 

of the difference term [46]. Based on these reasons the 

authors applied the Modified Index of Agreement 

(MID) as part of the PCIs. The results for MID in 

Tables 5 and 6 further corroborate the above mentioned 

deficiencies in the D. The MID varies from 0 to 1 with 

higher values indicating a better fit of the model. With 

this in mind, it can be stated that the TLS-FFBPNN 

models are better than the other models. 

6.4 Model Selection Criteria 

In order to further confirm the superiority of the 

hybrid approach (TLS-FFBPNN) as the optimum 

model in predicting 2D cartesian coordinates over the 

FFBPNN and the least square methods (OLS,GLS,TLS) 

the Bayesian Information criterion (BIC) was applied. 

Also, BIC tends to favour models with fewer 

parameters because its penalty term is smaller 

compared to other criteria. The BIC is represented 

mathematically as 

 

where n denotes the number of observations, SSE the 

sum of squares of residuals, and K is the penalty term 

for the number of parameters. 

The results in Table 7 illustrates that the BIC selected 

both the TLS-FFBPNN models of Northing-Latitude  
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Table 7  Model selection results. 

METHOD BIC VALUES METHOD BIC VALUES

OLS -1.091247 OLS -7.834144 

GLS -1.091342 GLS -7.831833 

TLS -1.092840 TLS -7.821243 

FFBPNN -44.630483 FFBPNN -87.767933 

TLS-FFBPNN -175.820946 TLS-FFBPNN -139.996336 
 

and Easting-Longitude as the optimum model for 2D 

cartesian coordinates prediction. The reason is that the 

TLS-FFBPNN model obtained the least value of BIC 

among the other models. 

7. Conclusion 

Coordinate prediction is crucial in the surveying 

and mapping industry especially in developing 

countries like Ghana where a non-geocentric 

coordinate system and datum are still used. It is worth 

knowing that coordinates determined for any geodetic 

application is used by geospatial and non-geospatial 

professionals for various purposes. For this reason, in 

order to facilitate setting a standard in practice for 

coordinate prediction especially in Ghana, a hybrid 

approach of Total Least Squares-Feed Forward Back 

Propagation Neural Network (TLS-FFBPNN) is 

proposed to be used over conventional techniques 

(Ordinary Least Squares, Total Least Squares, General 

Least Squares) particularly within local geodetic 

networks. Hence, building an effective and accurate 

prediction model has become a major research area for 

both academia’s and field practitioners in recent times. 

The proposed hybrid method utilizes the prediction 

tool capabilities of both the total least squares and 

artificial neural network architecture of a multilayer 

perceptron. Using this methodology, researchers and 

surveyors will be able to predict two-dimensional (2D) 

coordinates using readily available global geodetic 

data. This methodology can stir up an intelligent front 

end and also add a whole new dimension to the usage 

of artificial neural network in the surveying and 

mapping industry. It further proves that there is a 

relationship, no matter how complex in nature, 

between global geodetic coordinates and 2D cartesian 

coordinates. It was also shown from the study that a 

carefully designed artificial neural network is capable 

to predict 2D coordinates of Eastings and Northings 

with accuracies comparable to actual measurements 

than the conventional techniques. The final hybrid 

prediction models summary in this study have shown 

that the models gives more than 99% overall accuracy 

for the prediction of the 2D cartesian coordinates. This 

has further shown that the computational efficiency of 

hybridizing artificial neural network and conventional 

methods cannot be over stated. To conclude, the 

proposed hybrid model could be used for cadastral 

surveys, farm compensation surveys, topographic 

mapping, engineering surveying and other related 

mapping activities because of the following 

considerations: the mean-square error and root mean 

square error is small indicating no significant over 

fitting occurring; an overall hybrid model prediction 

error of not more than 15 cm; satisfied the 

performance criteria evaluations as well as the 

Bayesian Information Criterion test. 
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