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Abstract: This paper is an extended research for a novel technique used in the pose error compensations of the robot and 

manipulator calibration process based on an IT2FEI (interval type-2 fuzzy error interpolation) method. Robot calibrations can be 

classified into model-based and modeless methods. A model-based calibration method normally requires that the practitioners 

understand the kinematics of the robot therefore may pose a challenger for field engineers. An alternative yet effective means for 

robot calibration is to use a modeless method; however with such a method there is a conflict between the calibration accuracy of the 

robot and the number of grid points used in the calibration task. In this paper, an interval type-2 fuzzy interpolation system is applied 

to improve the compensation accuracy of the robot in its 3D workspace. An on-line type-2 fuzzy inference system is implemented to 

meet the needs of on-line robot trajectory planning and control. The simulated results given in this paper show that not only robot 

compensation accuracy can be greatly improved, but also the calibration process can be significantly simplified, and it is more 

suitable for practical applications. 
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1. Introduction  

A model-based method for robot calibration 

involves setting up a kinematic model for the robot, 

measuring positions and orientations of the robot 

end-effector, identifying its kinematic parameters and 

compensating its pose errors by modifying its joint 

angles [1]. Most of published research results for 

robot calibration belong to this category. The 

advantage of a model-based calibration method is that 

a large workspace can be calibrated accurately and all 

pose errors within the calibrated workspace can be 

compensated by joint angles. Its disadvantage lies in 

the fact that the understanding of kinematic modeling 

and identification processes needs advanced 

knowledge in robot kinematics, which may pose a 
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challenge to field engineers. 

On the other hand, a modeless method does not go 

through any kinematic modeling and identification 

steps. In a pose measuring process, a robot workspace 

is divided into a sequence of small squares in a 2D 

case, or cubes in a 3D case with nominal grid points 

around each cell are assumed known. All position 

errors on the grid points are measured and recorded by 

moving the robot through all the grid points. These 

position errors are stored in memory for future usage. 

With a modeless method, simple error compensation 

for a target position can be realized by interpolating 

errors from its neighboring grid points [2]. Its 

disadvantage, however, is conflict between calibration 

accuracy and number of grid points. In spite of this, 

because of its simplicity and effectiveness, the 

modeless calibration technique is widely adopted in 

industrial applications. 

D 
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There are also several different alternative 

approaches to the model-based and modeless robot 

calibration methods discussed at the above. Whitney 

and Shamma [3, 4] reported a non-parametric 

accuracy compensation method using polynomial 

approximating functions; however a nominal inverse 

kinematic model of the robot to be calibrated is still 

needed to calculate the joint position vector 

corresponding to the desired position of the robot 

end-effector. Another non-parametric compensation 

approach is to divide the workspace of the robot into a 

sequence of discrete areas or cubic cells and then use a 

numerical procedure to determine the inverse 

kinematic solution for each area or cubic cell. The 

problem of implementing that approach is that a huge 

size of memory space is needed to store those inverse 

kinematic solutions. To solve this problem, James 

Albus [5, 6] developed a so-called CMAC (cerebellar 

model articulation controller) to reduce the memory 

size. By using this non-parametric compensation 

method, the workspace of the compensated robot is 

about a quarter of the normal robot workspace and the 

accuracy is around 0.12 mm [3]. 

Most traditional modeless calibration methods use 

some interpolation techniques, such as linear 

interpolation, bilinear interpolation and cubic spline 

interpolation, which are widely utilized in industrial 

settings. Because actual error distribution of a robot 

may not satisfy linear or cubic models, the estimated 

errors would not be as accurate as desired. To improve 

numerical interpolation accuracy, different approaches 

have been attempted by researchers. Zhuang and Wu 

[7] reported a histogram method for estimating the 

optimal membership function distribution in order to 

improve the accuracy of measured positions. Carlson 

and Looney reported a new image interpolation 

method that refined the bilinear and fuzzy 

interpolation techniques [8]. Song, Smith and Rizk 

provided an optimized fuzzy logic controller for the 

generation of optimal trajectories based on OCT 

(optimal control table) [9]. Bai and Wang developed a 

type-1 fuzzy interpolation technique to improve the 

accuracy of robots calibration in the 2D and 3D spaces 

[10-12]. 

In the research reported in this paper, a modeless 

on-line interval type-2 fuzzy interpolation method is 

developed and implemented to improve the calibration 

accuracy of the robot in its 3D workspace. A 

comparison between the compensation results of using 

the type-1 and the type-2 fuzzy interpolation 

techniques is made through simulation studies. Three 

error models, sinusoidal waveform, normal and 

uniform distributed errors, are tested. Because the 

actual neighboring errors on each grid point are 

random distributed, and the error surfaces on each cell 

are also random functions at a certain moment, the 

traditional membership functions are not suitable for 

our study (each cell is a cubic that is surrounded by 8 

grid points). Moreover, the lookup table may not be 

calculated in advance until the output membership 

functions that are associated with the actual position 

errors on grid points are determined during the error 

measurement process. This means that one cannot use 

the traditional off-line fuzzy technology to obtain the 

lookup table for fuzzy error interpolation. The crisp 

output must be estimated on-line based on the errors at 

the neighboring grid points, which means that the 

output membership functions must be dynamic 

functions of the neighboring errors.  

The remainder of the paper is organized as follows: 

The type-1 fuzzy interpolation technique tailored to 

robot calibration is discussed in Section 2. Section 3 

provides an introduction to interval type-2 fuzzy 

interpolation technique, and the simulation results to 

illustrate the feasibility and merits of using the type-2 

fuzzy interpolation over the type-1 fuzzy interpolation 

method is given in Section 4. Concluding remarks are 

given in Section 5. 

2. On-Line 3D Type-1 Fuzzy Interpolation 

As has been mentioned, a modeless compensation 

method involves only two steps: robot pose measuring 
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and error compensation. Compared with the 

model-based compensation, the kinematic modeling 

and identification steps are no longer needed for the 

modeless compensation method. This can 

signif icantly save workload in a robot calibration. It 

starts with a measurement process, in which position 

errors of the robot end-effector are measured at all 

specified grid points on a sequence of pre-determined 

cubic cell within the robot workspace. A suitable 

interpolation technique is then applied to fit the target 

position error based on the position errors of 

neighboring grid points around the target position. 

Among several interpolation methods, the linear 

interpolation technique is a simple and popular one, 

and is widely adopted by modeless robot calibration.  

When using the modeless method to calibrate 

robots, it is necessary to have some proper 

measurement device with sufficient accuracy, such as 

a CMM (coordinate measurement machine), a set of 

cameras (a stereo camera system) or a laser tracking 

system, which is used to gather robot position errors 

as the robot moves its end-effector to all grid points 

on the pre-determined cubic cell.  

Fig. 1 shows a configuration setup for modeless 

robots calibration process. 

The robot workspace is divided into a sequence of 

small cubic cells and each small cell is surrounded by 

8 neighboring grid points, which is shown in Fig. 2. 

At each grid point, the laser tracker is used to check 

the position errors of the end-effector of the robot. In 

Fig. 2, the desired position of the grid point i  is 

( ix , iy , iz ), and the actual position of the robot 

end-effector is ( ix , iy , iz ). The position errors for 

this grid point are iix xxe  , iiy yye   and 

iiz zze  . The robot will be moved to all grid 

points on the robot workspace, and all position errors 

on these grid points will be measured and stored in the 

memory for future usage. During the compensation 

process, as the robot is moved to a certain target point 

on the workspace, an interpolation technique, say the 

linear interpolation method, is used to estimate the 

target position error based on the errors of the 

neighboring grid points around the target point, and 

finally these errors are added into the target position to 

obtain the compensated position, with which, the 

robot is commended to move to that position. 

Basically, the linear interpolation method is based 

on the assumption that errors in a cubic cell are 

distributed uniformly, and the interpolated error is 

obtained from three plans that are constructed based 

on 8 neighboring errors on the grid points around the 

target cubic cell. However in the real world, this 
 

 

Fig. 1  A setup for modeless robot calibrations.  
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Fig. 2  A cubic cell in robot workspace. 
 

assumption may not be valid. Position errors on each 

cell may not be distributed uniformly. We can 

consider the ),,( zyxex
 , as the fourth dimension 

function based on the position yx ,  and z  inside 

each cubic cell. Same consideration is held for 

),,( zyxey
  and ),,( zyxez

 . The compensation 

accuracy of using either the linear or bilinear 

interpolation technique is limited by this assumption.  

In order to solve this problem and to improve the 

compensation accuracy, an on-line fuzzy interpolation 

method is introduced. The traditional fuzzy inference 

system uses pre-defined membership functions and 

control rules to construct lookup tables, and then pick 

up the associated control output from the lookup table 

as the fuzzy inference system works in an application. 

This type of system is called off-line fuzzy inference 

system because all inputs and outputs have been 

defined prior to the application process. In this study, 

this off-line fuzzy system cannot meet the task 

requirement based on the following reasons: first, the 

position error of the target point is estimated based on 

8 errors of the neighboring grid points, and these 8 

neighboring errors are random distributed. The 

off-line fuzzy output membership functions are 

defined based on the errors range, in here, the 

neighboring errors’ range. However this range 

estimation is not as good as the actual errors obtained 

on the grid points. Second, since one cell needs one 

lookup table for the off-line fuzzy system, it requires 

huge memory space to save a large number of lookup 

tables, which is both space and time consuming and 

therefore is not suitable for industrial applications. For 

example, if the robot workspace is divided into 40   

40   40 small cubic cells, one needs to have 64,000 

lookup tables! By using an on-line dynamic fuzzy 

inference system, one can estimate the target position 

error on-line by combining the output membership 

functions that are obtained from the actual errors on 

the neighboring grid points. With this approach, one 

does not need off-line lookup tables at all. This means 

that the system determines the output membership 

functions only after the fuzzy inference system is 

applied to an actual process, using real errors on the 

grid points, not a range. 

Fig. 3 shows conceptually the definition of the 

fuzzy error interpolation inference system. Each small 

cubic cell that is surrounded by 8 neighboring grid 

points is defined as a cell, and furthermore this cell is 

further divided equally into 8 smaller cells, which are 

shown in Fig. 3a. The position error at each grid point 

is defined as P1, P2, P3, P4, P5, P6, P7 and P8.  

For the type-1 fuzzy inference system, we apply the 

interpolations in three dimensions separately, so the 

inputs to the fuzzy inference system are yx ee ,  and 

ze . The outputs are yx eeee ,  and zee , which are 

shown in Fig. 3b. 

The control rule is shown in Fig. 3c, which is 

straightforward and based on the human knowledge. 

The only point to be emphasized is that each iP  

should be considered as a combination of three   

error components on each grid point, xiP , yiP  and 

ziP , which are responding to errors in x, y and z 

directions. 

The distances between the neighboring grid points 

of each cell on the workspace are 20 mm in x, y and z 

directions for this study, which is a standard interval 

for a mid-size calibration workspace. Totally the 

workspace includes 40   40   40 cells, which is 

equivalent to an 800   800   800 mm
3
 space. The 

input membership functions for x, y and z directions 

and the predefined output membership functions are 

shown in Fig. 4. 
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Fig. 3  Definition of the fuzzy interpolation inference system. 
 

 
Fig. 4  Input and output membership functions. 
 

The predefined output membership function is used 

as a default one, and the final output membership 

function will be obtained by shifting the default one 

by the actual error values on the grid points. For each 

cell, 8 output membership functions are implemented 

and each one is associated with the error at one grid 

point. In Fig. 4b, only 4 output membership functions 

are shown here because of the space limitation. In an 

application, total 8 membership functions should be 

utilized.  

The gaussian-bell waveforms are selected as the 

shape of the membership functions for three inputs as 

shown in Fig. 4a, the ranges of inputs are 

between—10 and 10 mm (20 mm interval on grid 

points). W and E represent the inputs located at 

different areas in the x direction, N and S represent the 

inputs located at different areas in the y direction, and 

L and U represent the inputs located at different areas 

in the z direction. Unlike the traditional fuzzy 

inference system, in which all membership functions 
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should be determined to produce the lookup table 

prior to the implementation of the fuzzy system, in 

this study, the output membership functions will not 

be defined until the implementation of the fuzzy error 

mapping to compensate the position errors. So the 

output membership functions will be determined 

during the application of the fuzzy inference system 

on-line or dynamically. This is called dynamic fuzzy 

system. Fig. 4b shows an example of the output 

membership functions, which are related to the 

simulated random errors at neighboring grid points. 

Each xiP , yiP  and ziP  responds to the position 

error at the ith grid point in the x, y and z directions, 

respectively. During the design stage, all output 

membership functions should be initialized to a 

gaussian waveform with a mean of 0 and a range 

between –0.5 and 0.5 mm, which is a typical error 

range for this workspace in robotic calibration. These 

output membership functions will be determined 

on-line based on the errors of the neighboring grid 

points around the target point in the workspace as 

mentioned above.  

The control rules shown in Fig. 3c can be 

interpreted as follows after the output membership 

functions are determined: 

If ex is W and ey is N, and ez is U, then eex is Px1, eey 

is Py1 and eez is Pz1. (P1) 

If ex is W and ey is N, and ez is L, then eex is Px3, eey 

is Py3 and eez is Pz3. (P3) 

If ex is W and ey is S, and ez is U, then eex is Px5, eey 

is Py5 and eez is Pz5. (P5) 

If ex is W and ey is S, and ez is L, then eex is Px7, eey 

is Py7 and eez is Pz7. (P7) 

If ex is E and ey is N, and ez is U, then eex is Px2, eey 

is Py2 and eez is Pz2. (P2) 

If ex is E and ey is N, and ez is L, then eex is Px4, eey 

is Py4 and eez is Pz4. (P4) 

If ex is E and ey is S, and ez is U, then eex is Px6, eey 

is Py6 and eez is Pz6. (P6) 

If ex is E and ey is S, and ez is L, then eex is Px8, eey 

is Py8 and eez is Pz8. (P8) 

The control rules are straightforward and they are 

based on the human knowledge. The error on P1 grid 

point should be taken more weight if the target 

position (input) is located inside the NWU area on a 

cell. Similar conclusion can be derived for errors on 

all other grid points. 

3. Interval Type 2 Fuzzy Interpolation 

System 

3.1 Overview of the Interval Type 2 Fuzzy 

Interpolation System 

Similar to type 1 fuzzy inference system, the type 2 

fuzzy inference systems still use the input and output 

membership functions, combined with the control 

rules, to derive the outputs [13-21]. However, the 

fuzzy sets used in the type 2 fuzzy logic or the 

membership grades involved in each membership 

function are not crisp values, but another fuzzy sets. 

This means that the membership degrees for all 

membership functions used in the type 1 fuzzy system 

are fixed values and can be determined uniquely 

before the fuzzy inference system works. But the 

membership degrees for all membership functions 

used in the type 2 fuzzy system are fuzzy sets. The 

difference between the standard type-2 fuzzy system 

and the so-called interval type-2 fuzzy system is that 

in the former system, the membership degrees are 

pure fuzzy sets, but the membership degrees are a set 

of crisp values with a range of 0 ~ 1 or an interval for 

the latter. 

Fig. 5 shows the functional block diagram of an 

Interval Type-2 FLS [22]. It is similar to Typr-1 FLS, 

but the major difference is that at least one of the 

fuzzy sets in the rule base is an IT2 fuzzy set. The 

outputs of the inference engine are IT2 fuzzy sets, and 

a type-reducer is needed to convert them into a Typr-1 

fuzzy set before defuzzification can be started. 

Some fundamental operations in the type-2 fuzzy 

system are union (1), intersection (2) and complement 

(3) [23]. The union for interval type-2 fuzzy sets Ã 

and B
~

 is: 
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Fig. 5  A functional block diagram of the interval type-2 

fuzzy system. 
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In practice the computations in an IT2 FLS can be 

signif icantly simplif ied. Consider the rule base of an 

IT2 FLS consisting of N rules assuming the following 

form [22]: 

R
n
: if x1 is 

nX1  and … and xi is 
n

iX , then y is 

nY ; n = 1,2…N. 

where 
n

iX  (i = 1 ~ I) are IT2 fuzzy sets, and 
nY = 

[
ny1 ,

ny2 ] is an interval, which can be understood as 

the centroid [24, 25] of a consequent Interval Type-2 

fuzzy set, or the simplest TSK model, for its 

simplicity. In many applications we use 
nn yy 21  , i.e., 

each rule consequent is a crisp number. 

Assume the input vector is x′ = (x′1, x′2, ..., x′I ). 

Typical computations in an IT2 FLS involve the 

following steps: 

(1) Compute the membership of ix  on each Xn

i ; 

(2) Compute the firing interval of the n
th
 rule, F

n
(x′); 

(3) Perform type-reduction to combine F
n
(x′) and 

the corresponding rule consequents with the 

center-of-sets type-reducer [24]: 

 rl
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(4) Compute the defuzzified output as: 

2

rl
yy

y


               (5) 

3.2 Membership Functions 

Similar to type-1 fuzzy interpolation system, the 

input membership functions for x, y and z directions 

and the predefined output membership functions for 

IT2 FLS are shown in Fig. 6. The predefined output 

membership functions are used as default functions, 

and the final output membership function will be 

obtained by shifting the default those by the actual 

error values on the grid points. 

We use W and E to represent the location of inputs 

in x direction, N and S to the location of inputs in y 

direction, and U and L to the location of the inputs in z 

direction. For real outputs, 8 membership functions, 

px1 ~ px8, should be designed for the x direction, and 

another 8 membership functions, py1 ~ py8, and pz1 ~ pz8 

are to be built for the y and z directions. These output 

functions should be located at the center position, 

which are defined as the default location, as the 

beginning and changed to the real locations based on 

the actual position errors on each grid point. In Fig. 6, 

these functions are all displayed but not in the default 

locations. 

As for the control rules, the identical control rules 

are used for this IT2 FLS, but the fuzzy sets are used 

as the degrees to replace those crisp values used in the 

type-1 FLS. 
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Fig. 6  The input and output membership functions for 

IT2 FLS. 

4. Simulation Result 

Extensive simulation for position compensations 

has been performed in order to illustrate the 

effectiveness of this IT2 fuzzy error interpolation 

technique in comparison to the type-1 FLS. Because 

of the similarity, the angles simulations are not shown 

in this paper. Due to the random nature of the position 

errors, three different types of error are simulated in 

this study. These are:  

 Normal distributed random error; 

 Uniform distributed random error; 

 Sinusoidal waveform error. 

Figs. 7-9 show the simulation results of the type-1 

and the IT2 fuzzy error interpolation techniques for 

these three types of error [23]. 

In these figures, the simulated target (testing) positions 

on the standard calibration board are spaced from    

1 mm to 20 mm within each cell being with a size of   

1 mm. 

Figs. 10 and 11 show comparisons in mean error, 

maximum error and STD values between type-1 and 

IT2 fuzzy error interpolation techniques in the 

histograms. Only the normal and uniform random 

errors are shown here since there are not significant 

differences between the type-1 and type-2 fuzzy 

interpolations for the sinusoidal error distributions.  

It can be seen that both mean errors and maximum 

errors of the IT2 fuzzy error interpolation technique 

are smaller than those of type-1 FLS methods. For all 

three error distribution, the mean errors of the IT2 
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Fig. 7  Interpolation results—normal distributed errors. 
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Fig. 8  Interpolation results—uniform distributed errors. 
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Fig. 9  Interpolation results—sinusoid waveform errors. 
 

fuzzy error interpolation method are approximately 

10% to 20% smaller compared with those of type-1 

FLS method. 

The maximum errors of  the IT2 fuzzy error 

interpolation technique are about 10% to 30% smaller 

than those of the type-1 FLS method. In one case 

(normal distribution error in x, y and z direction), the 
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Fig. 10  Normal distributed errors. 

 

 

 

 
 

 
 

 
Fig. 11  Uniform distributed errors. 
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Fig. 12  The IT2 fuzzy interpolation error surface. 
 

maximum errors of the IT2 fuzzy interpolation 

method are about 4% smaller than those of the type-1 

FLS method. 

Fig. 12 shows the IT2 fuzzy interpolation error 

surface. 

The simulated results show the effectiveness of the 

dynamic on-line interval type-2 fuzzy error 

interpolation technique in reducing the position errors 

in the modeless robot compensation process. 

To implement this interval type-2 fuzzy error 

interpolation technique as a real time application, an 

interface between the MATLAB
®

 and high level 

programming languages C/C++ has been developed 

[26]. Although the most popular real time control 

programming language is C/C++, the fuzzy error 

interpolation method is developed and implemented in 

MATLAB [23]. Using this interface, the measured 

position errors on the grid points can be passed from 

C/C++ to MATLAB functions that implement the 

interval type-2 fuzzy error interpolation functions; and 

the fuzzy error interpolation results can be sent back 

to C/C++ for the real time controller to operate on the 

next target position.  

5. Conclusion and Summary 

A dynamic on-line interval type-2 fuzzy error 

interpolation technique is presented in this paper. The 

compensated position errors in a modeless robot 

calibration can be greatly reduced by the proposed 

technique. Simulation results demonstrate the 

effectiveness of the proposed fuzzy error interpolation 

technique. Three typical error models are utilized for 

comparison and simulation; these include sinusoidal 

waveform, normally distributed and uniformly 

distributed errors. This fuzzy error interpolation 

technique is ideal for the modeless robot position 

compensation, especially the high accuracy robot 

calibration process. 
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