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Abstract: Industrial metrology deals with measurements in production environment. It concerns calibration procedures as well as 
control of measurement processes. Measuring devices have been evolving from manual theodolites, electronic theodolites, robotic 
total stations, to a relatively new kind of laser-based systems known as laser trackers. Laser trackers are 3D coordinate measuring 
devices that accurately measure large (and relatively distant) objects by computing spatial coordinates of optical targets held against 
those objects. In addition, laser trackers are used to align truthfully large mechanical parts. However, such aligning can be done in 
moving parts, for instance during robot calibration in a welding line. In this case, serial robots are controlled in order to keep a 
prescribed trajectory to accomplish its task properly. Nevertheless, in spite of a good control algorithm design, as time goes by, 
deviations appear and a calibration process is necessary. It is well known that laser tracker systems are produced by very well 
established enterprises but their laser products may result expensive for some (small) industries. We offer two parallel robot-based 
laser tracker systems models whose implementation would result cheaper than sophisticated laser devices and takes advantage of the 
parallel robot bondages as accuracy and high payload. The types of parallel robots evaluated were 3-SPS-1-S and 6-PUS. Modelling 
of the parallel robots was done by analytical and numerical techniques. The latter includes classical and artificial intelligence-based 
algorithms. The control performance was evaluated between classical and intelligent controllers. 
 
Key words: Parallel robots, laser calibration, classical and al-controllers. 
 

1. Introduction 

The laser tracker measures 3D coordinates by 

tracking a laser beam to a retro-reflective target held 

in contact with the object of interest. They determine 

three dimensional coordinates of a point by measuring 

two orthogonal angles (azimuth and elevation) and a 

distance to a corner cube reflector; typically a SMR 

(spherically mounted retro-reflector). These balls 

work as interface between the optical measurement 

from the tracker and moving system [1, 7]. 

In this work we propose to use a couple of parallel 

robots, a 3-SPS-1-S and a 6-PUS to implement a laser 

tracker in calibration mode for a serial robot in a 

welding line. In such a process, serial manipulators 
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need to be readjusted as time goes by. This 

readjustment is done by tracking of the serial robot 

position trajectory. Certain smooth path (a sinusoid 

for instance) is fed to the serial manipulator in order to 

be followed by a calibration device (the laser tracker). 

We propose to simulate this calibration process by 

coupling the dynamics of the arm with the parallel 

robots’ one. So, the serial manipulator will move 

following certain trajectory and the parallel robot in 

turn has to track this trajectory in order to determine if 

the serial robot is still calibrated. In order to 

accomplish this task, both parallel robots will be 

evaluated to determine which one tracks better the 

serial arm. 

In numerical simulations, we assume that an SMR 

is placed at the far end of the welding robot. Once that 

this robot starts moving following a reference signal 
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(simulating the welding process) the laser tracker 

(mounted in the parallel robot in turn) tracks the robot 

arm trajectory directing its laser beam to the SMR 

positioned at the welding arm (Fig. 1). Nevertheless, 

we consider a more realistic situation of the latter by 

adding a vibration on the floor (disturbance) as a 

result of other machines work effects (section two). 

In order to implement a set of controllers for this, 

the direct and inverse kinematics and dynamics had to 

be determined. For the former, classical and AI 

(Artificial Intelligence)-based algorithms (GA 

(Genetic Algorithms) and ANN (Artificial Neural 

Networks)) were developed. The latter was useful to 

design the control laws. 

The control laws have two kinds: classical (no 

AI-based) but linear and non-linear schemes as well as 

intelligent controllers. The former is represented by a 

PID (Proportional Integral Derivative) controller (linear 

case) and by a SMC (Sliding Mode Control) algorithm 

(non-linear case). The latter, by a F-PD (Fuzzy 

Proportional Derivative) controller and by a FSM 

(Fuzzy Sliding Mode) controller. For sake of clarity, 

some results here were taken from Refs. [2, 3, 8, 9, 17]. 

All the algorithms were run in MATLAB/Simulink. 

Section two describes the interaction between the 

serial arm and the parallel robot in turn. 

Section three concerns the theoretical development 

of the kinematics and dynamics of the 3-SPS-1S 

manipulator as well as part four does the same for  

the 6-PUS robot. Next, the results of the performance 

evaluation of both parallel robots are given in  

sections five and six. Finally, conclusions are 

discussed in part seven. 

2. Modelling the Parallel-Serial Robots 
Interaction 

In this work, both parallel robots-based laser tracker 

systems are used to assess a serial arm tracking 

performance. As it was explained in abstract, the serial 

manipulator suffers deviations from its reference 

signal as time goes by. Naturally, the serial arm works 

in industrial environment, which implies that its 

tracking control algorithm can deal with disturbances 

(vibrations) produced in the welding line. This fact 

implies that the parallel robot also has to deal with 

these disturbances in order to warrant a good deviation 

test for the serial manipulator. The performance of 

both robots, the 3-SPS-1S and the 6-PUS were tested 

and reported here. The pair of robots will track the 

serial one. In order to accomplish this goal, two 

classical controllers were evaluated for each parallel 

robot model: a linear one, a PID controller and a 

non-linear  one, a  SMC. Later, two fuzzy logic 

controllers were tested: a F-PD controller and a 

F-SMC, which is actually a fuzzy sliding mode 

proportional controller. See sections five and six. The 

persistent perturbation p(t) which models the vibration 

of other machines and which affects our laser tracker 

performance is defined as p(t) = 0.1sin(2π(5)t) 

because it is assumed that the serial arm moves 

according to a reference signal given by r(t) = 

0.5sin(2π(0.5)t). So, the disturbance frequency is ten 

times bigger than the reference’s one. Although the 

serial robot is an industrial arm with six degrees of  
 

 
Fig. 1  Interaction between two different kinds of robots via AI and classical control in the presence of disturbances. 
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freedom, for the purposes of tracking calibration it 

will move as a three degrees of freedom robot. The 

base will rotate from left to right, and by keeping 

fixed three joints, the equivalent upper structure will 

be a two degrees of freedom serial robot (Fig. 1). The 

latter structure will develop an up-down sinusoid 

motion for its end effector. This equivalent two 

degrees of freedom serial robot is a well known 

nonlinear dynamical system [10] which was modeled, 

controlled (by a F-SMC) and simulated in Ref. [15]. 

As this serial arm exhibited a very good performance 

with the above mentioned controller [15], for the 

current experiment its output position was recorded in 

Simulink. This signal was used as the reference signal 

for the parallel robot, modelling in this way that the 

laser beam mounted on the parallel robot is linked to 

SMR on the serial robot’s end effector. As a 

consequence, the parallel robot (laser tracker) will 

have to move considering its Euler angles (section 

three) according to the following considerations: ω = 

0.01, φ is the signal received from the serial 

manipulator and which has to approximate φ = 

0.5sin(2π(0.5)t), and ψ = 3sat(t), t ≥ 0 for tracking. 

The latter provide a side to side swiping in order to 

track the y-axis motions of the serial arm and φ tracks 

the sinusoid signal done by the serial robot. This 

simulation was developed in MATLAB/Simulink 

environment. For regulation purposes, the Euler 

angles references are chosen to be ω = 0.01, φ = 1(t), 

and ψ = 3sat(t), t ≥ 0, where 1(t) is a unit step. Finally, 

ω = 0.01 keeps a small enough fixed ω ≠ 0 away from 

its singularity. 

3. The Parallel Robot 3SPS-1S 

Serial manipulators have some drawbacks with 

respect to parallel robots. More accuracy, higher load 

capacity/robot mass ratio and more rigidity are just a 

few [6, 13]. Recall that a parallel robot consists of a 

fixed base connected by limbs to an (upper) moving 

platform (the end effector). The limbs are conformed 

by links and joints. So, parallel robots denominations 

come from their link structure. For instance, 3-SPS-1S 

means that the robot has three identical limbs with 

spherical (S) joints at the extremes and a prismatic 

joint (P) in the middle plus one passive (non actuated) 

joint in the middle of the end effector whose extremes 

are also spherical (1S). 

Cui and Zhang propose a special type of the robot 

3-SPS-1S [4]. Such architecture is shown in Fig. 2. It 

has three identical legs, made of two bodies, linked by 

an actuated prismatic joint. The legs are attached to 

the platform and the base by spherical joints. It is 

assumed that the platform and the base are circular, 

with radii pr  and br  respectively, and that the 

spherical joints of the legs are located along these 

circumferences. There is also a central passive leg that 

connects the center of the base to the center of the 

platform using a spherical joint. There are two 

coordinate systems. The general coordinate system xyz 

is located at the center of the base (point O), and the 

coordinate system of the platform uvw with origin on 

point P is located at the center of the spherical joint of 

the central leg. The orientation of the platform is given 

in terms of the Euler angles which are three angles 

introduced by Euler to describe the orientation of a 

rigid body [11, 13]. The central constraining leg of the 

mechanism increases the stiffness of the system and 

forces the manipulator to have three pure rotation 

degrees of freedom. 

3.1 Classical and AI-Based Algorithms to Determine 

the Workspace 

As a result of such analytical complexity of the 

equations which describe the workspace manipulator, 

it is not possible to give a closed solution for the 

workspace. Hence, numerical algorithms are required. 

For this manipulator, two kinds of algorithms were 

developed in Ref. [2]. The first type does not use 

artificial intelligence-based programs and the other 

one does.  

The former is based in five algorithms which look 

for  the  right  points  in  the  3D  space  while the 
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Fig. 2  Model of the 3SPS-1S parallel wrist and 
corresponding Euler angles for the end effector (moving 
platform). 
 

following conditions are checked: rightness of limbs 

length, avoiding collision among limbs, and restriction 

in the Euler angles. The resulting workspace is shown 

in Fig. 3, left panel. However, as it can be seen in Fig. 

3, the workspace looks small. So, a GA optimization 

was included to find the biggest workspace subject to 

the robot’s dimensions/mobility constraints [2]. It is 

known that the 3-SPS-1S parallel wrist is 

characterized by its lack of a big workspace; therefore, 

optimizing the parameters of the robot in order to 

maximize the workspace is very important. 

Nevertheless, it is also important for the manipulator 

to have its parameters br , pr  and h as close as 

possible to a set of desired parameters, mainly because 

many times there are size limitations in the location 

where the manipulator is to be placed. This method 

tries to maximize the workspace and at the same time, 

keep the robot parameters as close as possible to a set 

of desired parameters. The resulting optimized 

workspace can be seen in Fig. 3. See details in Ref. 

[2]. 

Linked with determination of the workspace is the 

computation of singularities which were calculated 

numerically in Ref. [2] by an algorithm which checks 

the Jacobian matrix of the manipulator. Singularities 

appear at ω∈ IR, φ = ψ = 0, where IR is the set of all 

real numbers. 

3.2 Inverse Kinematics 

It was chosen to solve the inverse kinematics first 

because it is easier for parallel robots than for their 

serial counterparts. Recall that the inverse kinematics 

problem considers that a desired position is known but 

the limb variables (links length) have to be computed. 

So, given the Euler angles ω, φ, ψ, the length of the 

limbs id  has to be calculated (Fig. 2). The 3SPS-1S 

inverse kinematics problem was also solved in Ref. [2] 

and is given by the following expression: 

     
  .3,2,1,

222




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Fig. 3  Left: Workspace computed with conventional algorithms (no GA). Right: Optimized workspace determined via GA. 
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where,  Tyixi aa 0,,ia  be the vector from origin O 
to point iA  in the xyz system, ib

B  the vector from 

origin P to point iB  in the rotating system uvw, 

 Th,0,0P , the vector between points O and P. 

Upper indices imply change of frame reference by 

rotation matrices. They are not included here but they 

were well explained in Refs. [3, 13]. 

3.3 Direct Kinematics via ANN 

The direct or forward kinematics problem is to 

deduce the orientation of the moving platform (ω, φ, ψ) 

when the limbs length id , i = 1, 2, 3 are known (Eq. 

(1) and Fig. 2). A numerical/geometric method was 

proposed in Ref. [2] in order to solve the direct 

kinematics problem. Nevertheless, such algorithm 

produced more than one solution. In order to find only 

one solution, an algorithm consisting of an ANN and a 

Newton-Raphson method was implemented in Ref. [2]. 

Roughly speaking, a system defined by Eqs. (1) and (2) 

has to be solved: 
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Obviously this system of equations does not have 

analytical solution and a numerical method is 

necessary. The method chosen was Newton-Raphson 

but this algorithm requires to provide an initial value 

close enough to the actual solution but such solution is 

unknown of the system. In order to find such 

approximate initial value an ANN was proposed. 

For any given length of the limbs and initial 

position of the platform, it is possible to find an 

approximate solution to the direct kinematics using 

the trained ANN. Once the approximate solution is 

found, Eq. (1) can be written three times (one for each 

limb) and the system of three non-linear equations can 

be solved using the Newton-Raphson’s method. A 

validation set consisting of 100 positions was used to 

check the method. The result error between the two 

trajectories was negligible. 

3.4 Dynamics 

In dynamics there also exist the inverse and the 

direct problems. The direct dynamics problem 

concerns to find the trajectory (and time derivatives) 

of the platform given the forces or torques in the 

actuators. On the other hand, the inverse dynamics 

problem determine the required forces or torques to 

get a given trajectory [6, 13]. In Ref. [3] the direct and 

inverse dynamics models were obtained. The direct 

model is linked with (open or closed loop) simulations 

purposes, i.e., a state space representation 

),( uxfx  , where, x is the state variable and u is 

the control signal. The inverse dynamics is concerned 

with the controller design (recall Lyapunov-based 

design [10]). The computation of a control law will 

provide the right forces/torques to accomplish a given 

task, so in order to simulate the closed loop system, 

the direct dynamics of the manipulator is needed. The 

work done in Ref. [3] provides further details about 

the following direct dynamics model. 

   22
1

11 VTτJVTx   T
p     (3) 
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In addition, pI  is the inertia matrix of the platform, 
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pω  the angular velocity of the platform, ib  the 

vector going from point P to point iB , is  is the unit 

vector pointing from iA to iB  and id  is the length 

of the ith leg, i = 1, 2, 3, [3, 6, 12]. The inertial effect 

caused by the laser unit mass was considered by 

increasing the moving platform mass, altering global 

inertial effects in Eq. (3). So, the parallel robot plus 

the laser beam unit, i.e., the laser tracker system 

considered here is represented by Eq. (3). The latter 

will be the plant controlled by AI algorithms and by 

classical control schemes according to the explanation 

given in section one. The inverse dynamics was 

obtained in Ref. [3]. 

4. The 6-PUS Parallel Robot 

The 6-PUS architecture is a mechanism which 

consists of the fixed platform, the end effector (moving 

platform) and six limbs with the same structure. Every 

limb is conformed by a prismatic joint (P) and a 

universal joint (U) in the base, plus a spherical 

articulation (S) at the end of the branch (Fig. 4). 

4.1 Inverse Kinematics 

It is well known that solving the inverse kinematics 

problem for a parallel robot is relatively easy. In Fig. 5, 

it can be deduced that the joint displacements are 

given by: 
 

     
2 2 22 2 2 2

1,...,6; { , , }.

T T
ij j ij ij j ij ij i i i i i id p b a p b a r

i j x y z

 
 
 

            

 

p b a p b a b a        (10) 

 

4.2 Numerical Computation of the Workspace 

The singularities and workspace for this 

manipulator were solved by programming several 

algorithms which considered the geometry and 

actuators constraints. Thus, the end effector jacobian 

matrix xJ  and the joint variables jacobian matrix qJ  

were obtained computationally in Ref. [9], Fig. 6. 

4.3 Direct Kinematics 

The direct kinematics was solved numerically in 

Ref. [9]. An algorithm referred to as arcs method is 

deduced and programmed. It is also explained there 

how an improved design of the circular end effector 

was developed. The former rounded design was 

changed by a triangular shape which resulted to 

behave better. 

4.4 Dynamics 

The direct and inverse dynamics problems for this 

robot were solved in Ref. [8]. However, the analytic 

expression for the inverse dynamics is more 

complicated for the 6-PUS robot than for the 

3-SPS-1S robot. The reason is that there are three 

forces involved and only one is known. See details in 

the above mentioned reference. In contrast, the direct 

dynamics representation is less complicated for this 

6-PUS robot than the one for the 3-SPS-1S 

manipulator. Such model is given below: 

HGτJGW 11   T        (11) 

where,  TωυW   and υ, ω are the translational 

velocity and the angular acceleration of the center of 

gravity of the end effector respectively. In addition: 
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Fig. 4  6-PUS robot limbs and articulations. 
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Fig. 5  6-PUS robot geometry and rendered model. The Euler angles are defined in the same way as for 3-SPS-1S robot (in 
Fig. 2). 
 

 
Fig. 6  6-PUS robot workspace is obtained by solving 

numerically det( qJ ) = 0. 
 

 
Fig. 7  Final design of the 6-PUS robot. 
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and a is an arbitrary 3 x 1 vector. q
1
x JJJ   is a 

Jacobian matrix which relates displacements of the 

platform with displacements of the actuators and 

 represents the forces applied to the actuators of each 

limb [3, 8]. 

5. The Case of the 3-SPS-1S Robot 

5.1 Closed Loop System 

As it was mentioned before, two classical (crisp) 

controllers are tested here in terms of performance. 

Later, they will be compared with their AI-based 

counterparts. The general control loop used in this 

work is shown in Fig. 8 where the controller will be 

generic and will be either classical or intelligent. It is 

remarkable that the blocks are very complex and 

details are omitted. Note for instance that the Euler 

angles have to be transformed to actuator variables by 

means of the inverse kinematics blocks (Fig. 8). 

Although equations are mathematically enough to 

describe a dynamical system, the gap between models 

and numerical implementation is huge [16, 17]. It is 

remarkable that in Fig. 8 each block contains many 

sub blocks and MATLAB scripts. They contain the 

equations described through all the paper. 

5.2 Regulation Case 

As  explained  in  Ref. [2], three Euler angles 

references were chosen in order to assess two classical 
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Fig. 8  Generic closed loop for all the control schemes. 
 

controllers, a linear PID controller and a non-linear 

controller; a SMC. Both performances were simulated 

and explained below. 

5.2.1 Linear PID Controller  

A PID controller was implemented in the model 

environment described above. Recall that a 

PID-control law is defined by 

 dtxxKxKu DP
~~~          (14) 

where, μ is the control law, xxx d ~  is the error 

of the closed loop system, dx  is a desired variable 

(reference), and x  is an actual variable to be 

compared with the reference. In this case the poor 

nature of the linear PID controller could not deal with 

the complex and perturbed dynamics of the parallel 
robot. Angles   and   could not be regulated and 

the performance presented by   was quite poor, 

reaching the unit reference after seven seconds. The 

figure is not shown. 

5.2.2 Nonlinear Controller: SMC 

It is well known that a sliding mode regime allows 

asymptotic stability and asymptotic tracking via 

Lyapunov theory [10]. Such regime is accomplished 

by a suitable controller designed in terms of the 

sliding variable s which allows the state variables of 

the dynamical model to converge to an invariant set 

referred to as sliding hyperplane. The sliding variable 

s and its corresponding time derivative are given by 

the following equations [10]: 

0,~,~~   xxxxxs d
        (15) 

xxs  ~~                (16) 
where, dx  is the desired variable (reference to 

follow) and x  is the interest variable, a state variable 

or a generalized coordinate. The SMC could regulate 

the laser tracker proposed in a relatively good way 

needs three seconds to achieve the goal (Fig. 9). 

Obviously, the complexity of this controller helped to 

regulate the parallel robot outputs. 

5.3 Tracking Case 

5.3.1 Linear PID Controller  

The reference angles for tracking were explained in 

section two. The resulting positions of the perturbed 

laser tracker were given in Ref. [17]. It was clear that 

the PID can deal with neither disturbances nor the 

parallel robot dynamics. 

5.3.2 Nonlinear Control: SMC  

It was mentioned that Eq. (3) was referred to as 

direct or forward dynamics. In this section, it is more 
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Fig. 9  Reference and output Euler angles of the parallel robot controlled by a SMC. 
 

convenient to consider its dual, i.e., the inverse 

dynamics. The inverse dynamics model is more 

suitable to design nonlinear controllers as the SMC. 

Renaming 1VTM 1p  , 2VTK 2p  , τJu T , 

where, p stands for platform, Eq. (3) can be written as 

Eq. (17): 

uKxM ppp              (17) 

In the sense of [10], the control law which can deal 

with the above mentioned disturbance in sliding mode 

regime was designed as follows: 

( ) ) ( ),

, , 0

p t sat

k k

   

  
p pd p p pu (M x K M Λx K s

Λ I K I

 
 (18) 

where, sat(s) stands for saturation function of s and I 

is the identity matrix. The last summand in the latter 

equation is a compensation term which achieves the 

sliding regime. The closed loop system results from 

substituting Eq. (18) in Eq. (17) yielding: 

)()(( sKI)KIsM p sattp        (19) 

By means of Lyapunov theory stability and tracking 

are achieved [10, 15]. Consult the corresponding 

perturbed outputs in Ref. [17]. 

It is noteworthy mention that although SMC is very 

robust and in general provide good close loop 

performance, its computation may take long time and 

frequently ends up with numerical stiff problems as a 

consequence of the highly non-linear closed loop, i.e., 

plant plus controller. The SMC parameters used here 

were 33.0  and 1k . 

5.4 Artificial Intelligence-Based Controllers 

Next, the AI version of the latter PID and SMC 

controllers are assessed here. It is well known that 

AI-based controllers have good performance in 

difficult situations as partially known models of a 

plant, complex (nonlinear) systems, etc. [5]. 

5.4.1 Regulation Case 

For comparison purposes, two AI-based controllers, 

analog to their classical partners were designed in this 

section. First, a fuzzy proportional derivative 

controller was implemented and later, a fuzzy sliding 

mode controller was tested. Their performance and 

simulation results are explained next. 

5.4.2 Fuzzy Proportional Derivative Controller  

This controller has two fuzzy inputs and one fuzzy 

output. This controller ended up to be a relatively 

good regulator for this set of references. It seems that 

the fuzzy conversion of the crisp signals and the 

complete fuzzy signal processing helped to deal with 

this regulation problem. 

5.4.3 Fuzzy Sliding Mode Controller  

In contrast to F-PDC, the F-SMC was not able 
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enough to regulate the laser tracker outputs as desired. 

Although this controller takes advantages of its fuzzy 

part, this one is not enough to deal with the complex 

dynamics of the parallel robot plus the perturbed input. 

In this case, ω diverged, and although ψ and φ did not 

diverged, their performance was quite poor. 

5.5 Tracking Case 

5.5.1 Fuzzy Proportional-Derivative Controller  

Although the reference inputs were already 

described in part 2, they are shown in Fig. 10 

accompanied with the output curves produced with 

this controller. The performance achieved in this case 

is examined well by observing that picture. It can be 

seen that the tracking goal is reasonably well achieved 

after a transient period of five seconds. It is 

noteworthy mention that the fuzzy algorithm is rather 

simple (a Mamdani-based one [5, 14]) but it could 

deal reasonably well with the disturbance in order to 

have a good performance. The decision Table. 1 is 

given, where, as usual, symbols mean N=Negative, 

ZE=Zero, P=Positive, B=Big, S=Small. 

The F-PD succeeded because its input/output 

characteristic approximates statically a sliding mode 

regime [5, 15]. Of course the classical PID controller 

can not compete with this F-PD controller. In Fig. 10, 

but notice that the scale of the figures is different in 

order to appreciate better this performance. 

5.5.2 Fuzzy Sliding Mode Controller  

The idea behind this controller is to become fuzzy 

the sliding variable s via a fuzzy decision vector. The 

sliding mode regime requires for s to stay in the plane 

(or hyperplane) defined by Eq. (15). A control law u 

will be in charge of that. Such control law will be 

designed quite close to the one given by Eq. (18), but 

an extra term w will be added. This w will give a 

fuzzy component in the controller. As there are three 

Euler angles to control, there must exist three identical 

sets of fuzzy rules respectively. These fuzzy rules 

have to provide the control to reach the sliding plane. 

if s is NB then u is PB; 

if s is NM then u is PM; 

if s is NS then u is PS; 

if s is ZE then u is ZE; 

if s is PS then u is NS; 

if s is PM then u is NM; 

if s is PB then u is NB. 

“M” stands for “medium”, i.e., a finer partition was 

necessary here [15]. Membership functions were 

chosen triangular in the middle and trapezoids at the 

extremes. Fuzzy controllers of this type define 

nonlinearities as well but static. More precisely, fuzzy 
 

 
Fig. 10  Disturbed outputs in the laser tracker system controlled by a F-PD. 
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Table 1  Fuzzy Rules for the F-PD. 

xx ~~  NB NS ZE PS PB 

NB NB NB NB NS ZE 

NS NB NB NS ZE PS 

ZE NB NS ZE PS PB 

PS NS ZE PS PB PB 

PB ZE PS PB PB PB 
 

rules surfaces are nonlinear static (memoryless) 

bounded sector nonlinearities [5, 15]. The 

input-output surface (actually a curve) for the set of 

rules shown above is a distorted straight line. That is 

why this fuzzy control is only proportional. Now it is 

necessary to define the sliding control law as it was 

done in Eq. (18). Adding an extra compensation term 

w to Eq. (18) yields Eq. (20): 

0,,

,)()~)(





kk

sattp

IKIΛ

wsKxΛMKx(Mu ppppdp



  (20) 

Again, by Lyapunov theory a positive definite 

function was chosen in such a way that its derivative 

can be negative definite in order to warrant stability 

and tracking (see section 5.3.2 and Refs. [10, 15]). 

In this case the performance obtained was poor  

with respect to the reference signal. The reason is  

that the fuzzy decision rules have one input and one 

output and this construction is not enough to deal with 

this problem. Lyapunov theory indicates that the 

control law given by Eq. (20) will work properly as 

long as the variable w provides enough energy. This  

is not the case for this system. Note that the set of 

rules of the F-SMC defines only a proportional  

sliding mode controller. Nevertheless a F-SMC has 

achieved a good performance for a simpler nonlinear 

dynamics, the robot described in Ref. [15]. Summing 

up, for regulation and tracking, the F-PD controller 

ended up to be the best. The second place corresponds 

to the SMC. 

6 The Case of the 6-PUS Robot 

6.1 Closed Loop System 

The closed loop system for this robot corresponds 

also to the one shown in Fig. 8. It is noteworthy 

mention that the general performance of this 

manipulator was a bit worse than the one achieved by 

the 3-SPS-1S manipulator. One has to reflect that the 

central limb of the 3-SPS-1S is a clear advantage 

because that link helps to keep stability and tracking. 

6.2 Regulation Case 

6.2.1 Linear PID Controller  

This controller’s performance resulted to be very 

poor as a result of the simplicity of the PID controller 

with respect to the complexity of the 6-PUS     

robot. The output responses are not shown for this 

reason. 

6.2.2 Nonlinear Control: Sliding Mode Controller  

The inverse model was used here to design the 

SMC for this robot. The stability analysis is similar to 

the one done for the 3-SPS-1-S and it will not be 

repeated here (see section 5.3.2). In contrast with the 

PID controller, the SMC behaved better although with 

some difficulties before the first six seconds of 

simulation time. The parameters used in this case were 

5.0  and 1k . 

6.3 Tracking: Linear and Non-linear Cases 

Similarly to the 3-SPS-1S the tracking task was not 

accomplished successfully neither by the PID 

controller nor by the SMC. Recall that the 6-PUS does 

not possess a central passive limb as the 3-SPS-1S. 

This fact implies a drawback for the 6-PUS in 

regulation and tracking. As a result of this, these 

curves are not included. 

6.4 AI-Based Controllers: F-PDC and F-SMC 

The set of controllers used in the 3-SPS-1S robot 

were applied to the 6-PUS as well. For the case of the 

Fuzzy Proportional Derivative Controller (F-PDC), 

the decision table changed with respect to the one 

used for the 3-SPS-1S as shown in Table 2. Observe 

the region around ZE which needs more control effort 

as the 3-SPS-1S controller. 
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Fig. 11  Regulation response of the 6-PUS platform, compared with Fig. 9. 
 

Table 2  Fuzzy rules for the F-PD. 

xx ~~  NB NS ZE PS PB 

NB NB NB NB NS ZE 

NS NB NS NS ZE PS 

ZE NB NS ZE PB PB 

PS NS ZE PS PS PB 

PB ZE PS PB PB PB 
 

The corresponding output is given in Fig. 12. 

Notice how the ψ angle can not track well the 

saturation reference compared with Fig. 10. 

The F-SMC was described in 5.5.2. There were two 

changes in the decision vector. The consequent in rule 

number three became PB instead of PS. Analogously 

happened in rule five. The consequent became NB 

instead of NS. The Lyapunov analysis was done here 

in the same way as in section 5.5.2. The resultant 

performance was similar to the case of the 3-SPS-1S 

and figures are not provided. In general, the performance 

showed by the 6-PUS robot was a bit worse than the 

one displayed by the 3-SPS-1S. One reason is that the 

central leg in the latter robot helps to provide stability, 

especially in tracking tasks. Nevertheless, an extra set 

of tracking tasks was designed for this robot in order 

to redeem his performance. 

6.4.1 Extra Tracking Tasks 

Three further tests were done in this case. One is a 
 

 
Fig. 12  Tracking response of the 6-PUS platform due to a F-PD controller. 
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circular trajectory on the plane x-y keeping height 

(z-axis) constant at 5 cm. The output position 

trajectory of the platform is shown in Fig. 13 with the 

forces required in the actuators to produce such 

oscillatory path. 

An animation for the 6-PUS model was created in 

MATLAB in order to illustrate how the robot moves. 

The red circles on the platform indicate the oscillatory 

motion of the end effector, showed in Fig. 14. 

The second tracking test was done enhancing the 

latter scenario. A 3D swinging was performed by the 

6-PUS robot. Similarly to the latter case, the platform 

position is given for the three axis as well as the forces 

required in the actuators, in Fig. 15. 
 

 
Fig. 13  An oscillatory motion of the platform on the x-y plane produces the following output position with the 

corresponding actuators forces i, i = 1,..., 6. 
 

 
Fig. 14  Fluctuating 3D motion of the platform with constant height. 
 

 
Fig. 15  A 3D oscillatory motion of the 6-PUS platform. The corresponding actuators forces , i = 1,..., 6 are also given. 
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Fig. 16  MATLAB model which illustrates a swinging 3D trajectory of the platform with constant height. 
 

 
Fig. 17  The parallel robot tracks a letter M trajectory. The joint distances computed are here. 
 

A frame of an animation for this case is shown in 

Fig. 16 from two perspectives. 

The third tracking test was developed in a more 

difficult trajectory. In this case the parallel 

manipulator had to follow a letter M path created by 

the serial arm. The results for the actuators length are 

given in Fig. 17. 

7. Conclusions 

Two types of parallel robots were evaluated to be 

used as laser tracker systems, a 3-SPS-1-S and a 

6-PUS. In general, considering the classical and 

AI-based controllers, the performance obtained by the 

former was a little bit better than the latter as a result 

of the central extra passive link which help to stabilize 

the end effector. Nevertheless, it is well known that 

parallel robots are very difficult to deal with, either 

modelling them or simulating them. Moreover, to 

design a satisfactory control law is rather challenging. 

But if in addition to the laser tracker models proposed, 

an interacting dynamics with an extra serial robot in a 

perturbed environment are considered, the global 

scenario results quite complicated to deal with. 

Numerical stiffness, algebraic loops come into picture 

due to the highly non-linear interaction in the whole 

system. 
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