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Abstract: we have developed ferroelectric capacitor fabrication technique to realize low-voltage and high-density ferroelectric 
random access memory (FRAM). High temperature deposited IrOx top electrode reveals high crystalline quality which drastically 
reduces the degradation of ferroelectric film by preventing hydrogen diffusion into ferroelectric film. This improvement enables us to 
commercialize highly-reliable 1T1C FRAM with memory density of 4 Mb or larger. 
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1. Introduction 

Ferroelectric random access memory (FRAM) is the 

first commercialized memory among advanced 

non-volatile memories such as magnetoresistive RAM 

(MRAM), phase change RAM (PCRAM), and 

resistive RAM (ReRAM) [1-4]. FRAM has been 

reported to have advantages of lower power 

consumption and higher switching endurance in 

comparison with commercial base FLASH memory, 

Spin-Torque-Transfer (STT) MRAM, and PCRAM [5]. 

We have developed fabrication technologies focusing 

on reliability, decreasing operation voltage, and power 

consumption. In our development, an interface control 

between ferroelectric material and electrode is found 

to be crucial for decreasing the operation voltages 

with maintaining the large polarization. This capacitor 

fabrication improvement with circuit improvements of 

the sensing amplifier [6, 7] has successfully realized 

robust reliability of the 4 Mb or larger memory-size 

FRAM. Our FRAM has evolved from 5 V operation 

and 0.5 μm node CMOS to 1.8 V operation and 0.18 
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μm node CMOS. This paper describes the key 

technologies of FRAM fabrication process and circuit 

design.  

2. Experiments 

FRAM fabrication process consists of conventional 

0.18 m CMOS and ferroelectric capacitor fabrication 

processes which were described elsewhere [3]. IrOx top 

electrode, Pt bottom electrode and LCSPZT (La, Sr 

and Ca doped PZT) were deposited by sputtering. 

Fabrication procedures of conventional and new 

ferroelectric capacitor are shown in Fig. 1. We 

employed two-step annealing process consisting of 

anneal 1 (about 650 °C) and anneal 2 (about 750 °C) 

by using rapid thermal annealing (RTA) to obtain good 

crystalline LCSPZT with uniform sized grain. Both of 

those two annealing procedures are carried out before 

depositing the top electrode. While top electrode IrOx (x 

is around 2.0) deposited at room temperature in the 

conventional procedure, the 1st top electrode IrOy (y is 

around 1.9) about 350 °C, and then the 2nd top electrode 

IrOx was deposited at room temperature in the new 

capacitor fabrication procedure. Oxidation stages of x 

and y were measured by the 2nd ion mass spectroscopy. 
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Fig. 1  (a) Fabrication procedures of conventional; (b) new 
developed ferroelectric capacitor.  
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Fig. 2  X-ray diffraction patterns of conventional IrOx 
(blue line) and new (black line) IrOy.  

3. Results and Discussion 

Although we tried to reduce the thickness of the 

ferroelectric film from 200 nm to 150 nm to obtain 1.8 

V operation ferroelectric capacitor by conventional 

procedure, ferroelectric capacitor with 150 nm thick 

LCSPZT had poor ferroelectric properties, such as 

small switching polarization (Qsw) and large coercive 

voltage (Vc), which prevents the FRAM from reading 

and rewriting operations at 1.8 V. Since we found the 

interface control between the IrOx top electrode and 

PZT is important to lower the operation voltage, we 

improved the top electrode deposition process. We 

have found that high temperature about 300 °C 

deposition of IrOx drastically improved the crystal 

quality, as shown in Fig. 2. Fig. 3 shows the 

cross-sectional TEM images of the conventional and 

new ferroelectric capacitors. It is clear that IrOx near 

the interface of new capacitor is very smooth. 

Improvements of the Qsw and the Vc are also clear as 

shown in Fig. 4. Leakage current of the new 

ferroelectric capacitor is slightly larger than that of 

conventional capacitor, as shown in Fig. 5, however, 

which does not significantly influence to the FRAM 

function. Relatively larger leakage current of small 

capacitor may be due to its large side area of the 

capacitor. Our reliability examination results of 

switching endurance and imprint endurance (opposite 

state (OS) rate) are shown in Fig. 6. In the OS rate, the 

closer value to zero indicates the better imprint 

endurance. Reliability of FRAM with new ferroelectric 

capacitor is clearly superior to that of conventional 

FRAM.  

The interface region of ferroelectric film near the 

top electrode is degraded by inter-reaction during the 

heat treatments in metallization, thus resulting in the 
 

 
Fig. 3  Cross-sectional TEM micrograph of the 
ferroelectric capacitors. (a) Conventional; (b) new capacitor. 
Oxidation state as denoted x and y are about 1.9 and 1.8, 
respectively.  
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Fig. 4  In-wafer distribution of switching polarization at (a) 
1.8 V and (b) coercive voltage. 
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Fig. 5  Leakage currents distribution on a wafer for 

monitors consisting of (a) 1,250  2 μm2 large capacitors 

and (b) one 2,500 μm2 large capacitor.  
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(b) 

Fig. 6  Reliability examination results of (a) switching 
endurance and (b) imprint endurance or OS rate.  
 

degradation of ferroelectric properties. Since the 

thickness of the degraded region does not change unless 

employing the same fabrication procedure, degradation  
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Fig. 7  Schematic cross-sectional ferroelectric capacitors, 
(a) conventional and (b) new capacitor. 
 

of the ferroelectric properties is more sever for thin 

ferroelectric film. In the conventional capacitor, above 

mentioned degraded region of ferroelectric film 

possibly enlarged by large inter reaction because 

as-deposited IrOx is initially amorphous and its 

diffusion speed is expected to be large. After heat 

treatment, while the upper portion of the top electrode 

found to be composed of columnar-shaped grain, the 

lower portion is composed of round-shaped large 

grain from precise TEM observation, as schematically 

shown in Fig. 7a, which may be due to large inter 

diffusion. Since XRD analysis has proven that IrOx 

contains metallic Ir, it is possible that hydrogen 

generated during the metallization catalytically 

activated by the metallic Ir reduces IrOx by itself and 

the ferroelectric film. When the ferroelectric film is 

reduced, characteristics of the ferroelectric capacitor 

are degraded [8]. It is also considered that oxygen 

vacancies in the IrOx cause much easier hydrogen 

diffusion. In the new ferroelectric capacitor 

fabrication procedure, since precise SEM and TEM 

observations revealed the as-deposited IrOy is 

composed of very fine grain, as schematically 

depicted in Fig. 7b, it is supposed to be much more 
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difficult to react with ferroelectric film, as suggested 

by smoother interface in Fig. 3b, which possibly 

prevents interface degrading layer from enlarging and 

also prevents hydrogen from diffusing into 

ferroelectric film. Hence, we have successfully 

developed 1.8 V operable 1T1C 4 Mb FRAM with 

excellent reliability. 

4. Conclusions  

We have developed new ferroelectric capacitor 

fabrication technology to realize a mass production of 

1.8 V operation 1T1C 4Mb FRAM. Superior 

characteristics and highly reliable ferroelectric 

capacitor was obtained by employing high 

temperature IrOy top electrode deposition.  
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