

A Short Note on the Conjugation in the Leibniz-Hopf Algebra

Neşet Deniz Turgay

Independent Scholar, 126/7 Sok. No:10/1, Daire 3, Evka 3, Bornova- Izmir 35050, Turkey

Received: Octorber 27, 2013 / Accepted: December 12, 2013 / Published: January 25, 2014.

Abstract: The Leibniz-Hopf algebra is the free associative *Z* − algebra with one generator in each positive degree and coproduct is given by the Cartan formula. It has been also known as the 'ring of noncommutative symmetric functions' [1], and to be isomorphic to the Solomon Descent algebra [12]. This Hopf algebra has links with algebra,topology and combinatorics. In this article we consider another approach of proof for the antipode formula in the Leibniz-Hopf algebra by using some properties of words in [2].

Key words: Hopf algebra, Leibniz-Hopf algebra, antipode, Steenrod algebra.

1. Introduction

-

The Leibniz-Hopf algebra, F , is the free associative *Z* − algebra on one generator, $Sⁿ$, $n > 0$ in each degree with the graded Hopf algebra structure determined by $\Delta(S^n) = \sum_{i+j=n} S^i \otimes S^j$, $S^0 = 1$.

As *F* is a graded and connected algebra, we have: $F = \bigoplus_{n>0} F_n$. Topologists know this algebra as the homology of the loop space of the suspension of the infinite complex projective space, $H_*(\Omega \Sigma CP^{\infty})$. On the other hand, the antipode in $H_* \left(\Omega \Sigma \mathbb{CP}^{\infty} \right)$ arises from the time-inversion of loops. Hence it leads to a geometric point of view for the antipode or conjugation, χ , on the Leibniz-Hopf algebra (see Section 1 of [3] for more details). The mod *p* reductions $F \otimes Z / p$ are also important in algebraic topology, since the mod *p* Steenrod algebra is naturally defined as a quotient of $F \otimes Z$ / p by the Adem Relations [4]. (to be precise, for odd primes, this is the sub algebra of the mod *p* Steenrod algebra generated by Steenrod powers.)

The conjugation on F and its dual has been studied in [5-7] connection with the Steenrod algebra and commutativity in ring spectra [8, 9]. A formula for the antipode on *F* was given in [10-12].

In this paper we give a proof for this conjugation formula in the language of words in [2]. This paper is produced from [13].

2. Results

Proposition 2.1 Let *R* be the set of all words of degree *n*, where $n \ge 1$. Then

$$
R = A_1 \coprod A_2 \coprod \cdots \coprod A_n,
$$

where
$$
A_i = \begin{cases} i, l_1, ..., l_s : l_1, ..., l_s \text{ is a word of} \\ \text{degree } n - i \end{cases} for
$$

 $i = 1, \ldots, n$

Proof: See Proof of Proposition 2.3 of [2].

Lemma 2.2 The antipode for *F* may be defined by recursively $\chi(S^0) = S^0$, and for any $x \in F_n$, $n \ge 1$.

$$
\chi(x) = -\sum_{i=1}^m y_i \chi(z_i),
$$

where

$$
\Delta(x) = S^0 \otimes x + \sum_{i=1}^m y_i \otimes z_i
$$

and degree of $z_i < n$.

Proof: See Proof of Lemma 2.4.12 of [13].

Proposition 2.3 For a given generator $x = S^n$, the antipode is given by

Corresponding author: Neşet Deniz Turgay, Ph.D., researcher, research fields: Algebraic topology, word Hopf algebras, Steenrod algebra. E-mail: deniz_turgay@yahoo.com.

$$
\chi(S^n)=\sum (-1)^k S^{i_1,\dots,i_k},
$$

where the summation is over all refinements [2] $S^{i_1,...,i_k}$ of S^n .

Proof: The proof will proceed by induction on the degree *n*. Conjugation preserves the indentity element so we have: $\gamma(S^0) = S^0$ [14].

On the other hand, by coproduct formula of *F* , Lemma 2.2 shows that we have a recursive formula for the antipode which is given by

$$
\chi(S^n) = -\sum_{i=1}^n S^i \otimes \chi(S^{n-i}). \tag{1}
$$

Eq. (1) expands in the following:

$$
\chi(S^n) = -\left(S^1 \chi(S^{n-1}) + \dots + S^n \chi(S^{n-n})\right). \tag{2}
$$

As
$$
\chi(S^0) = -S
$$
, Eq. (2) turns into:
\n
$$
\chi(S^n) = -\left(\frac{S^1 \sum (-1)^{k_1} S^{r_{11}r_{12},...,r_{1k_1}}}{+ \cdots + S^n \sum (-1)^{k_n} S^{r_{n1}r_{n2},...,r_{nk_n}}}\right), \quad (3)
$$

where the summation is over all refinements $r_{11}, r_{12}, ..., r_{1k}$ of $n-1, ...$, and the last one is over all refinements r_{n1} , r_{n2} , ..., r_{nk_n} of $n - n = 0$, i.e., 'empty' word. Hence, the length of r_{n1} , r_{n2} , \ldots , r_{nk} , namely k_n is zero. In particular, by distributive property of the product on F Eq. (3) turns into:

$$
\chi(S^n) = \sum (-1)^{k_1+1} S^{1, r_{11}, r_{12}, \dots, r_{1k_1}} + (-1)^{k_2+1} S^{1, r_{21}, r_{22}, \dots, r_{2k_2}}
$$

$$
\cdots + (-1)^{k_n+1} S^n.
$$
 (4)

In the language of Proposition 2.1, we observe that each summation on the right-hand side of Eq. (4) is over A_i , where $i = 1, ..., n$ and each summand in the summation appears with coefficients $(-1)^{k_i+1}$, where $k_i + 1$ is the length of summand. I.e., the summation $\sum_{i=1}^{\infty} (-1)^{k_{i+1}} S^{1, r_{i1}, r_{i2}, \dots, r_{i k_{i}}}$ is over A_{i} , and each summand $S^{1, r_{11}, r_{12}, \dots, r_{1k_1}}$ has coefficient $\left(-1\right)^{k_1+1}$, and so on. Note that when $i = n$ the summation has only one summand which is S^n with coefficient $(-1)^{k_n+1} = (-1)^l$, since $k_n = 0$.

Moreover, the set of all refinements of the word *n* corresponds to R which is the finite union of these A_i . Thus, by Proposition 2.1 the right hand-side of Eq. (4)

is the sum of all refinements of S^n .

Theorem 2.4 Let $S^{b_1, b_2, \dots, b_p} \in F$, then the antipode is given by

$$
\chi(S^{b_1,\dots,b_p}) = \sum (-1)^n S^{t_1,\dots,t_n},
$$

where the summation is over all refinements $S^{t_1,...,t_n}$ of $S^{b_p,...,b_1}$.

Proof: As χ is also an anti-automorphism, we arrive at

$$
\chi(S^{b_1,\dots,b_p}) = \chi(S^{b_p})\chi(S^{b_{p-1}})\cdots\chi(S^{b_2})\chi(S^{b_1}).
$$

More precisely, by Proposition 2.3 we have:

$$
\chi(S^{b_1,\dots,b_p}) = \sum (-1)^{k_1} S^{i_1,\dots,i_{k_1}} \sum (-1)^{(k_2 - k_1)} S^{i_{k_1+1},\dots,i_{k_2}} \cdots \sum (-1)^{(k_p - k_{p-1})} S^{i_{k_{p-1}+1},\dots,i_{k_p}}, \qquad (5)
$$

where $S^{i_1,...,k_1}$ is a refinement of S^{b_p} , similarly, $S^{i_{k_1+1},...,i_{k_2}}$ is a refinement of $S^{b_{p-1}},...,S^{i_{k_{p-1}+1,...,i_{k_p}}},$ is a refinement of S^{b_1} Multiplication of *F* is concatenation, so Eq. (5) turns into:

$$
\chi(S^{b_1,\dots,b_p}) = \sum (-1)^{k_p} S^{i_1\dots i_{k_1}i_{k_1+1}\dots i_{k_2}i_{k_2+1}\dots i_{k_{p-1}}i_{k_{p-1}+1}\dots i_{k_p}} ,
$$

where
$$
S^{i_1,\dots,i_{k_1}i_{k_1+1},\dots,i_{k_2}i_{k_2+1},\dots,i_{k_{p-1}}i_{k_{p-1}+1},\dots,i_{k_p}} \text{ is a refinement of } S^{b_p,\dots,b_1}. \text{ This completes the proof.}
$$

Acknowledgments

I would like to thank M.D. Crossley for his assistance during my work on my Ph.D. degree.

References

- [1] M. Hazewinkel, The algebra of quasi-symmetric functions is free over the integers, Adv. Math. 164 (2001) 283–300.
- [2] N.D.Turgay, Some notes on the dual Leibniz-Hopf algebra, Journal of Mathematics and System Science 3 (2013) 573-576.
- [3] A. Baker, B. Richter, Quasisymmetric functions from a topological point of view, Math. Scand. 103 (2008) 208–242.
- [4] N.E. Steenrod, Cohomology Operations. Ann. Math. Studies, Vol. 50. Princeton: Princeton Univ. Press.1962.
- [5] M.D. Crossley, N.D. Turgay, Conjugation Invariants in the mod 2 dual Leibniz-Hopf algebra, Communications in Algebra 41 (2013) 3261-3266.

36 **A Short Note on the Conjugation in the Leibniz-Hopf Algebra**

- [6] M.D. Crossley, N.D. Turgay, Conjugation Invariants in the Leibniz Hopf Algebra Journal of Pure and Applied Algebra 217 (2013) 2247-2254.
- [7] N.D. Turgay, A note on conjugation invariants in the dual Leibniz-Hopf algebra 7, no. 17, 809-815 DOI: 10.12988/ ija.2013.31099
- [8] M.D. Crossley, S. Whitehouse, On conjugation invariants in the dual Steenrod algebra, P Am Math Soc, 128 (2000) 2809-2818.
- [9] M.D. Crossley, S. Whitehouse, Higher conjugation in commutative Hopf algebras, P Edinburgh Math Soc, 44 (2) (2001) 19-26.
- [10] M.D. Crossley, Some Hopf Algerabs of Words, Glasg. Math. J. 48 (2006) 575-582.
- [11] R. Ehrenborg, On posets and Hopf algebras, Adv. Math. 119 (1996) 1-25.
- [12] C. Malvenuto, C. Reutenauer, Duality between Quasi-Symmetric Functions and the Solomon Descent Algebra, J. Algebra 177 (1995) 967-982.
- [13] N.D. Turgay, Conjugation invariants in Word Hopf algebras, Ph.D. Thesis, Swansea University, Swansea, 2012.
- [14] M.E. Sweedler Hopf algebras, Benjamin, 1969.