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Abstract: The Leibniz-Hopf algebra is the free associative Z — algebra with one generator in each positive degree and coproduct is

given by the Cartan formula. It has been also known as the ‘ring of noncommutative symmetric functions’ [1], and to be isomorphic to
the Solomon Descent algebra [12]. This Hopf algebra has links with algebra,topology and combinatorics. In this article we consider

another approach of proof for the antipode formula in the Leibniz-Hopf algebra by using some properties of words in [2].
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1. Introduction

The Leibniz-Hopf algebra, F, isthe free associative
Z — algebra on one generator, S", n>0 in each
degree with the graded Hopf algebra structure

determined by A(S") =), §'®S’, S° =1,

As F is a graded and connected algebra, we have:
F=@,.,F, Topologists know this algebra as the
homology of the loop space of the suspension of the
infinite complex projective space, H, (QZCP‘” ) On
the other hand, the antipode in H, (QECP™) arises
from the time-inversion of loops. Hence it leads to a
geometric point of view for the antipode or conjugation,
7 , on the Leibniz-Hopf algebra (see Section 1 of [3]
for more details). The mod P reductions F®Z / p
are also important in algebraic topology, since the mod
P Steenrod algebra is naturally defined as a quotient of
F ®Z/ p by the Adem Relations [4]. ( to be precise,
for odd primes, this is the sub algebra of the mod p
Steenrod algebra generated by Steenrod powers.)

The conjugation on F and its dual has been studied
in [5-7] connection with the Steenrod algebra and
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commutativity in ring spectra [8, 9]. A formula for the
antipode on F was given in [10-12].

In this paper we give a proof for this conjugation
formula in the language of words in [2]. This paper is
produced from [13].

2. Results

Proposition 2.1 Let R be the set of all words of
degree n,where N>1. Then

R=ALTALTL-1TA.

L0 oLl is aword of
where A = . for
degree n—i

i=1..n

Proof: See Proof of Proposition 2.3 of [2].

Lemma 2.2 The antipode for F may be defined by
recursively (S°)=S° andforany xe F, n>1,

20=-37, (@),
where
A(x)=S° ®x+ziril Y, ®1z,
and degree of z; <n.
Proof: See Proof of Lemma 2.4.12 of [13].

Proposition 2.3 For a given generator X =S", the
antipode is given by
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of g".

Proof: The proof will proceed by induction on the
degree n. Conjugation preserves the indentity element
so we have: »(S°) =S° [14].

On the other hand, by coproduct formula of F ,
Lemma 2.2 shows that we have a recursive formula for
the antipode which is given by

28N =-2, 8'®xs"). O
Eqg. (1) expands in the following:

2(S") =—(S' (8™ +-+8"2(8"M). (2)
As y(S"™) =S° Eq. (2) turns into:

2(87=- w | ©

where the summation is over all refinements
f1: 0y s Iy of N—1,..., and the last one is over all
refinements 1,1, ..., of Nn—n =0, i.e., ‘empty’

word. Hence, the length of I, I, ..., Iy , namely K,

is zero. In particular, by distributive property of the
producton F Eg. (3) turns into:

41 LA
xS =2 (-1)""s

-'-+(—l)k"+lsn. (4)

In the language of Proposition 2.1, we observe that
each summation on the right-hand side of Eq. (4) is
over A, where j =1,...,n and each summand in the

summation appears with coefficients (_1)'(‘*1, where

k; +1 is the length of summand. l.e., the summation

ky+1
. and so on. Note
that when | = n the summation has only one summand

which is §" with coefficient (—1)1(”+l :(—1)1, since
k, =0.

Moreover, the set of all refinements of the word n
correspondsto R which is the finite union of these A.

Thus, by Proposition 2.1 the right hand-side of Eq. (4)

is the sum of all refinements of S".
Theorem 2.4 Let S™"** < F, then the antipode is
given by

Proof: As y is also an anti-automorphism, we
arrive at

refinement of SP  Multiplication of F s

concatenation, so Eq. (5) turns into:

2(S* ) =3 (1" ,

Sil""'ikl'ik1+1 ----- by sty b ity e g
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