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Abstract:A dam failure analysis was performed for the City of Laiyang to determine the flood inundation extents and the breach 
velocities of a hypothetical failure of the Muyu Reservoir Dam in Shandong Province, China. The study was carried out in four steps. 
First, the possible reasons of the dam failure were analyzed, and the extreme hydrological event was identified as the most critical cause. 
Second, a numerical simulation of the dam break flood was performed. The key factors considered in this simulation include the water 
level at the dam (the check flood water level), the inflow to the reservoir (the check flood hydrograph), and two typical structural 
scenarios (with/without-levees) along the river reach downstream of the reservoir. Third, based on flood simulations, flood hazard risk 
analysis was conducted and the results indicate that the peak discharge would be over 40,000 m3/s at the breachand over 22,000 m3/s 
near Laiyang City. As a result, most of the urban area would be flooded; the duration from the beginning of the dam break to the arrival 
of peak discharge at Laiyang City is less than half an hour. Finally, a plan for integrated dam break flood management was presented to 
mitigate the flood risk; both available structural and nonstructural measures were proposed according to the situations in the river basin. 
The main strategic advises include flood emergency planning, flood risk mapping, flood monitoring and early warning system 
construction, reservoir regulation, and flood risk public awareness. 
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1. Introduction  

As water resources are essential for our civilization, 
many cities were developed along rivers, usually 
located at the downstream of various hydraulic 
structures such as dikes, reservoirs, and gates. While 
these structures are provided many benefits, they also 
expose lives and properties at higher flood risks due to 
the potential failure of these structures [1, 2]. To 
protect cities from such devastating flood disasters, 
practicing integrated flood risk management at the 
river basin level becomes important, and many projects 
have been carried out in recent years [3-6]. The 
emphasises in these projects focused on the scenario 
analysis of dam break [7, 8], the formation of breach 
[9-12], and the assessment on sequences [13], life 
losses [14, 15], risk and emergency management 
measures [16-21]. 
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Since 2006, a policy has been implemented in China 
for a large number of old reservoirs’ enhancement and 
reinforcement for water supply and flood risk 
management for cities in the downstream areas. This 
study, taking Laiyang City and Muyu Reservoir as an 
example, focused on extreme flood risk assessment due 
to a dam failure, then discussed an integrated flood risk 
management strategy. 

2. Study Approach 

2.1 Site Description 

As one of the important cities in Shandong Province, 
Laiyang City is located at the downstream area of the 
Muyu Reservoir in the mid-down reach of the Xianhe 
River, a branch of the Wulong River. Fig. 1 illustrates 
the location of the Muyu Reservoir in the Xianhe River 
watershed, which exhibits a long and narrow shape, 
with denuded low hills of the Ludong Structure. The 
altitude of the watershed ranges from 500 m in the 
north to 300 m in the south. The duration of a single  
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Fig. 1  Location map of the Xianhe River watershed.  
 

flood event typically lasts 15-20 hours. The Muyu 
Reservoir located on the main reach of the Xianhe 
River. From the dam site, the river extends 42 km 
upstream in a north-eastern direction with a mean 
channel slope of 1.32‰. At the downstream of the dam 
site, the river passes through the east urban district of 
Laiyang City. 

There are two major reservoirs in the watershed. The 
Muyu Reservoir is the primary feature; the 
Longmenkou Reservoir, located at the headwater area, 
is the secondary feature (see Fig. 1). The key hydraulic 
structures of the Muyu system include the dam, 
spillways, outlets, and monitoring facilities. The dam is 
a clay core earth structure, with a maximum height of 
44.80 m, a length of 310 m, and a crest-width of 7.4 m. 
The crest elevation is 90.76 m, and the wave wall top 
elevation is 91.96 m. 

Laiyang City includes four districts, Chengxiang, 
Guliu, Longwangzhuang and Fenggezhuang, with a 
total population of 250,000. The Muyu Reservoir is 9 
km northeast of Laiyang urban area. It covers an area of 
455 km2 and serves as a grade II multipurpose reservoir 
for the city and the vicinity area providing flood 
prevention, irrigation, water supply, as well as power 
generation and agriculture usage. 

Along the downstream of the Reservoir, there are 
also many villages and towns, with a total population 
of 150,000 and farmlands of 4,000 ha. In addition, two 
major transportation infrastructures run across the area, 
the Yan-Qing Highway and the Lan-Yan Railway (see 
Fig. 2). 

2.2 Dam Failure Flood Scenarios 

In general, dam failure disasters are induced either 
by eternal force or internal erosion. The documents of 
USACE Hydrologic Engineering Centre [22] present 
the factors as follows: 1) earthquake; 2) landslide; 3) 
extreme storm; 4) piping; 5) equipment malfunction; 6) 
structure damage; 7) foundation failure; and 8) 
sabotage. The most probable factors arising dam break 
in this basin flood include overtopping in extreme 
floods, geological disaster, dam failure in the upper 
reach, and terrorist attack. Geological disaster, such as 
earthquake, will ruin the stability and the structures of 
the main components of the water control project, such 
as dam, spillway, outlets, and then results in dam break 
flood. However, the river channel, levees and the city 
in the downstream will also suffer from the disaster, 
and the contributor to the heavy loss in this case is   
not only the dam break flood. Dam failure at the upper 
 

 
Fig. 2  Layout of Muyu Reservoir and Laiyang City.  
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reach, although possible, the damage is not severe. 
Because there is one medium-sized reservoir, two 
small class-1-reservoirs and 19 small class-2-reservoirs 
in the upstream area of the Muyu Reservoir, with total 
volume capacity of 77 Mm3, only that of 40% Muyu 
Reservoir, and the flood will run over 20 km in the 
mountainous river channel, and the energy of dam 
break flood from the upper reach will be significantly 
decreased by the very long and narrow shape of Muyu 
Reservoir (refer to Fig. 1). While a dam-break due to a 
terrorist attack is instantaneous and themost disastrous, 
the possibility that a reservoir like Muyu subject to 
terrorist attack is remote. Moreover, the dam-break 
caused by extreme flood events posts great uncertainty 
and difficult to prevent. Therefore, in this study, much 
attention was focused on the extreme flood events, 
rather than geological disaster, dam failure in the upper 
reach, and terrorist attack, when the dam break flood 
risk assessment was conducted. 

In addition to above, according to the Flood Control 
Plan of Laiyang City (1999) [23], a proposed levee 
system will be constructed along both banks of the 
Xianhe River, with the exception of the river reach 
through the urban area of Laiyang in order to provide a 
scenic view to the public.  

Based on above analysis, the following two flood 
scenarios for dam break in this study include: (1) 
overtopping failure due to an extreme flood event 
without dike system along the banks in the lower 
reaches; (2) overtopping failure due to an extreme 
flood event with dike system along the banks in the 
lower reaches. Basically, all breaks begin with a breach 
formation, and the breach is the opening in the dam 
body that leads to the break and causes the 
concentrated water behind the dam to routine 
downwards, and the study [24] indicates that the 
variation of dam break parameters exhibit minor 
impact on the water surface profile in downstream area; 
therefore, as a clay core earth dam, the breach mode in 
this study was presumed as gradual, and sensitivity 
analysis was performed for several key parameters. 

2.3 Dam Break Flood Simulation 

2.3.1 Dam Break Flood Modeling Theory and Tool  
Many tools for Dam break flood modeling, such as 

HEC-RAS [25], WOLF 2D [26, 27], MIKE [28], 
SOBEK [7], and others [29], can be found, and 
HEC-RAS was used in this study for its universality 
and usability. In this tool, unsteady flow analysis is 
used to conduct the flood modeling in this study. The 
continuity equation and momentum equation are the 
main scientific basis for unsteady flow analysis [25]. 
The continuity equation is as follow: 

0l
A Q q
t s

∂ ∂
+ − =

∂ ∂              
(1) 

where,  
A  = flow area, m2; 
Q = volume of flow, m3/s;  

lq  = the lateral inflow per unit length, m2/s; 

t = time variable, s; 
s = spatial distance along the direction of flow, m. 
And one form of the momentum equation is as 

follow: 
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where, 
V = flow velocity, m/s;  
z = elevation of water surface, m;  
g = gravitational acceleration, m/s2;  
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where, 
n = manning’s roughness coefficient;  
R = hydraulic radius, m. 
2.3.2 Data Collection 
The following data, required to simulate the dam 

break flood, were collected. 
2.3.2.1 The Muyu Reservoir Data 
The key components of Muyu Reservoir consist of a 

clay core dam, two spillways (the main with gate, and 
auxiliary), two outlets (east, west) and one power 
station. The clay core earth dam is 44.80 m high, 310 m 
long, 7.4 m in crest-width with the crest elevation at 
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90.76 m. The upstream face is protected by riprap, with 
berms built at the elevations of 81.35 m, 69.38 m, and 
55.96 m, respectively. 

The Muyu Reservoir is designed for the 100-year 
event, with a design pool elevation of 84.55 m; and the 
5,000-year event as the extreme-flood protection, with 
a flood pool elevation of 87.17 m. The normal 
impounded level of the reservoir (active level) is 
81.96 m, with a storage volume of 107 Mm3; the dead 
water level is 55.96 m with a dead volume of 2.1 Mm3. 
Fig. 3 depicts the elevation-volume relationship of the 
Muyu Reservoir. 

2.3.2.2 Land Use Features 
A topographic map with a scale of 1 : 20,000 and 

contour interval of 2.5 meters offered the layers of the 
river system, reservoir, levees, roads, railways, and 
resident areas (refer to Fig. 2). 

2.3.2.3 Data for Structural and Non-structural 
Measures 

The geometry data of the proposed levee system was 
obtained from Ref. [23]. Typically, 3 m high levee 
system would be proposed along both banks of the 
Xianhe River. 

2.3.2.4 Geometric Data 
The basic geometric data consisted of cross section 

data and reach lengths, energy loss coefficients 
(friction losses, contraction and expansion losses), as 
well as hydraulic structure data (bridges, culverts, 
spillways, weirs, etc.). 

There are four bridges located within the urban area 
of Laiyang City. Although these bridges would post 
certain localised impact on flood levels, they were not 
included in the dam-break model because the detailed 
bridge information was not available. Fig. 4 presents 
the river system and the layout of cross sections. As 
illustrated in Fig. 4, there were 17 cross-sections along 
the river reach from Muyu Dam to the river mouth. 

The cross-section geometry was composed of two 
different sources; the in-channel cross sections were 
taken from Ref. [23], and the anticipated inundation 
areas were developed using the latest topographic map. 

The Manning’s coefficients for the channel and 
overbank areas were estimated based on the field 
investigation conducted in December, 2011, which 
gave 0.035 for the main channel and 0.045 for typical 
overbank areas. 

The total length of the river reach is approximately 
16 km, and the distances between cross-sections are 
around 1 km.  

There are four narrow sections as the river passing 
through the urban area of Laiyang City. They are 
located between CS3 and CS7, near CS8, between 
CS11 and CS12, and between CS16 and CS17. 

It is necessary to supplement surveyed cross-section 
data by interpolating cross-sections between the 
surveyed sections. Interpolated cross sections are often  
 

 
Fig. 3  Elevation-volume relationship.  
 

 
Fig. 4  River system and cross sections.  
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required when the change in velocity head is too large 
to accurately determine the energy gradient. An 
adequate depiction of the change in energy gradient is 
necessary to accurately model friction losses as well as 
contraction and expansion losses. The river, after 
flowing through a narrow valley, passes a wide plane, 
then goes through a narrow saddle. In order to achieve 
reasonable results, cross section interpolation is 
necessary. The distance between two interpolated cross 
sections is about 250 m.  

2.3.2.5 Dam Breach Mode 
Dam break flood is one of the most severe disasters 

for the downstream area. According to the basic 
information of the reservoir, the dam, and the layout of 
the dam, the breach information was presented in Fig. 5a. 
Here, the initial water surface was the check flood level 
of the reservoir (87.17 m); failure mode was 
overtopping; the final bottom width was 50 m; the full 
formation time was about one hour. And the breach 
progress was assumed as following a sine wave (Fig. 5b). 
Special attention had been directed to the clay core 
earth dam for breach formation and the long strip of the 
Muyu Reservoir. 

2.3.3 Rating Curve Analysis 
Fig. 6 presents the rating curves at cross sections 

CS17, CS7, CS3 and CS1. The cross sections CS17 and 
CS1 represent, respectively, the upper and lower 
boundary of the river reach; the CS7 and CS3 located at 
the urban area. As demonstrated in Fig. 6, all curves 
exhibit a looping shape, and the rating curves from all 

other cross sections possess the similar trend.Therefore, 
the simulation results of stage and discharge are 
reasonable. 

3. Results and Discussions 

3.1 Flood Hazard Analysis 

The hazard information on the dam break flood is 
provided in Figs. 7 and 8 and Table 1. Fig. 7 indicates 
the water surface profiles of dam break flood 
simulation in two scenarios, Fig. 8 illustrates the water 
stage process at CS7, and Table 1 lists numeric 
information. River reach from CS7 to CS3 runs 
through the urban area (refer to Fig. 4). In Table 1, Q1 
and Q2 are the peak discharges at each cross section for 
scenario 1 and scenario 2, respectively, while WS1 and 
WS2 are the maximum water surface at each cross 
section in the two scenarios, respectively. Ha stands for 
the elevation of levee top and Hb for the elevation of 
river channel bed. 

Figs. 7 and 8 and Table 1 show the following results: 
(1) Table 1 indicates that the peak discharges at each 
cross section in both scenarios are in close proximity to 
each other. And the peak discharges were over 
43,000 m3/s at the breach and over 22,000 m3/s at the 
conjunction between the Xianhe River and the Wulong 
River. 

According to Ref. [23], the flow capacity at the river 
reach near Laiyang City is only about 800 m3/s (once in 
50 years), much less than the peak discharge of dam  

 

 
(a) Breach information for dam break flood            (b) Breach progress for dam break flood 

Fig. 5  Breach configurations for dam break flood.  
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Table 1  Main results of dam break flood simulation.  

CS Distance 
(km) 

Max. discharge (m3/s) Max. water surface (m) Ha (m) Hb (m) Difference (m) 
Q1 Q2 WS1 WS2 WS1-Ha WS2-Ha WS1-WS2 

17 15.35 43,706 43,705 62.14 62.18 50.78 47.48 11.36 11.40 -0.04 
16 15.00 43,548 43,629 58.35 58.31 50.31 47.01 8.04 8.00 0.04 
15 14.00 26,369 25,605 55.54 55.45 48.98 45.68 6.56 6.47 0.09 
14 13.00 25,726 24,976 55.26 55.19 47.65 44.35 7.61 7.54 0.07 
13 12.00 25,630 24,893 55.13 55.07 46.31 43.01 8.82 8.76 0.06 
12 11.00 25,567 24,838 53.90 53.88 44.98 41.68 8.92 8.90 0.02 
11 10.00 25,538 24,816 49.99 49.97 43.65 40.35 6.34 6.32 0.02 
10 9.00 25,010 24,200 49.12 48.97 42.31 39.01 6.81 6.66 0.15 
9 8.00 24,881 24,101 48.16 48.06 40.98 37.68 7.18 7.08 0.10 
8 7.00 24,832 24,061 45.59 45.53 39.65 36.35 5.94 5.88 0.06 
7 6.00 24,637 23,852 43.64 43.55 37.40* 34.50 6.24 6.15 0.09 
6 5.00 24,475 23,718 42.15 42.07 36.30* 33.18 5.85 5.77 0.08 
5 4.00 24,394 23,606 40.35 40.29 34.78* 33.00 5.57 5.51 0.06 
4 3.00 24,090 23,347 38.13 38.07 33.00 31.00 5.13 5.07 0.06 
3 2.00 23,460 22,679 36.49 36.42 32.00 29.80 4.49 4.42 0.07 
2 1.00 23,175 22,389 35.07 35.00 31.00 28.52 4.07 4.00 0.07 
1 0.00 22,716 21,951 33.63 33.56 29.50 27.48 4.13 4.06 0.07 

The star sign (*) stands for the elevation of the bank crest closing to the river channel. 
 

warning time is very limited! 
(4) The simulating results illustrate that the flow 

velocities in the river reach near Laiyang City reach up 
to 4-5 m/s, a very dangerous velocity to lives and 
properties. 

Fig. 9 presents the inundation area in case of a dam 
failure; it is clear that the urban area suffers heavily 
from the catastrophic flood. 

Moreover, it should be emphasized that the available 
data on bridge hydraulics within the urban area was 
limited and omitted when flood modelling was 
performed. Obviously, flooding in large scale floods 
would become more serious than that described and 
illustrated above if these bridges were fully taken into 
consideration, as these bridges have potential 
restricting waterway. 

3.2 Other Considerations 

3.2.1 The Impact from Reservoir Inflow 
Fig. 10 is a plot of the 5000-year inflow hydrograph 

for the Muyu Reservoir, obtained using comprehensive 
inflow unit hydrography method.  

It reveals a peak inflow of 5,320 m3/s, 

approximately 1/8 of the dam breach out flow of 
43,700 m3/s. As stated above, the surface length of the 
reservoir is 42 km from the head of the reservoir to the 
dam location; and the river channel between the Muyu 
Dam and the Longmenkou Dam is narrow and 
meandering. The distance, from the dam to Layang, is  
 

 
Fig. 9  Inundation map of dam break flood.  
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The key responses of an integrated flood management 
plan appropriate to the Xianhe River basin can be 
summarised under the Hazard-Exposure-Vulnerability 
model. 

First, the “Hazard” reduction options are where a 
higher level plan across the full river basin has real 
potential to provide strategic solutions that result in 
much greater efficiencies and effectiveness in flood 
risk reduction. The available options include, (a) the 
management on dams and reservoirs, as well as 
diversion channels, (b) controlling the sources, such as 
increasing infiltration, storage within the drainage 
system or on surface features, and (c) the management 
land use, such as regulations and practices for 
infrastructure and building drainage, and appropriate 
landscape planning. 

Second, the options for reducing “Exposure” 
comprise, (a) structural measures (such as dykes, river 
training works, river bank raising and raising of 
railways, roads and other infrastructure), (b) individual 
property protection (flood proofing and flood 
resilience), (c) land use control and regulation within 
floodplains, and (d) flood forecasting, flood warning, 
emergency planning and evacuation.  

Last, the options for reducing “Vulnerability” cover, 
(a) improving the physical living environment by 
improving infrastructure and providing better 
occupational opportunities, (b) enhancing social 
support systems, providing skills, training, education 
and awareness, and facilitating equal opportunities; 
and (c) facilitating greater self-organisation and 
building awareness to create a self-reliant culture. 

4. Conclusions 

As the City of Laiyang growing rapidly in recent 
years, the integrated flood management becomes 
important. This study analysed the flood risk due to the 
dam break of the Muyu Reservoir. The study focused 
mainly on the risk assessment of dam-break flood of 
the Muyu Reservoir to Laiyang City. 

The analysis was performed based on the available 

data that include: (1) the causes for possible dam-break 
flood’s occurrence, (2) the Muyu Reservoir, (3) the 
land use features, (4) structural and non-structural 
measures, (5) the geometric data, and (6) the dam break 
mode. Two typical scenarios of structural measures 
(with levee and without levees along the river banks in 
downstream reach) were considered to conduct the 
dam break flood simulation.  

The results indicate: (1) the peak breach discharge 
would be over 40,000 m3/s at Laiyang City; (2) the 
duration time from the beginning of dam failure to the 
arrival of peak discharge at Laiyang City is less than 30 
minutes; (3) most of the urban area would be severely 
flooded; and (4) the average flow velocities of flood in 
the river reach near Laiyang City would reach up to 
4-5 m/s.  

The hazard degrees of dam break flood in the two 
scenarios of structural measures are similar. It indicates 
that common structural measures would not produce 
significant difference in such extreme event like dam 
break flood. Instead, sufficient attention should be 
directed to non-structural measures, such as reservoir 
regulation, early warning, evacuation plan, flood risk 
public awareness, and practicing integrated flood 
management in Xiahe River basin. 
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